● Materi : Fungsi Komposisi
● Kode Kategorisasi: 10.2.3
Jawaban:
Penjelasan dengan langkah-langkah:
f(x) = x + 2. (fog)(x) = 2x² + 4x + 1
f (g(x)) = (fog)(x)
f (g(x)) = 2x² + 4x + 1
(g(x)) + 2 = 2x² + 4x + 1
(g(x)) = 2x^2 + 4x + 1 - 2
(g(x)) = 2x^2 + 4x - 1
(g(2x)) = 2 . (2x)² + 4 . (2x) - 1
(g(2x)) = 2 . (4x²) + 8x - 1
(g(2x)) = 8x² + 8x - 1
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
● Materi : Fungsi Komposisi
● Kode Kategorisasi: 10.2.3
Jawaban:
D. (g(2x)) = 8x² + 8x - 1
Penjelasan dengan langkah-langkah:
f(x) = x + 2. (fog)(x) = 2x² + 4x + 1
f (g(x)) = (fog)(x)
f (g(x)) = 2x² + 4x + 1
(g(x)) + 2 = 2x² + 4x + 1
(g(x)) = 2x^2 + 4x + 1 - 2
(g(x)) = 2x^2 + 4x - 1
(g(2x)) = 2 . (2x)² + 4 . (2x) - 1
(g(2x)) = 2 . (4x²) + 8x - 1
(g(2x)) = 8x² + 8x - 1