TRiGoNoMeTRi
-
tan (2x + ¹/₃π) = ¹/₃√3
tan (2x + ¹/₃π) = tan ¹/₃π
2x + ¹/₃π = ¹/₃π
2x = 0
x = α + k . π → rumus
2x = 0π + k . π
x = 1/2 kπ
k = 0 → x = 0π
k = 1 → x = 1/2 π
k = 2 → x = π
k = 3 → x = 3/2π
k = 4 → x = 2π
HP = {0π , 1/2π , π , 3/2 π , 2π}
#
2 cos² 3x - cos 3x - 1 = 0
misal p = cos 3x
2p² - p - 1 = 0
(2p + 1)(p - 1) = 0
maka p = -1/2 ∨ p = 1
jika p = -1/2
cos 3x = cos 2/3 π
3x = 2/3 π
x = α + k . 2π → rumus
3x = 2/3 π + k . 2π
x = 2/9 π + 2/3 kπ
k = 0 → x = 2/9 π
k = 1 → x = 8/9 π
k = 2 → x = 14/9 π
x = -α + k . 2π → rumus
3x = -2/3 π + k . 2π
x = -2/9 π + 2/3 kπ
k = 1 → x = 4/9 π
k = 2 → x = 10/9 π
k = 3 → x = 16/9 π
jika p = 1 , maka :
cos 3x = 1
cos 3x = cos 0
3x = 0
3x = 0π + k . 2π
x = 2/3 kπ
k = 1 → x = 2/3 π
k = 2 → x = 4/3 π
k = 3 → x = 2π
maka,
HP = {0π , 2/9 π , 4/9 π , 6/9 π , 8/9 π , 10/9 π, 12/9 π , 14/9 π, 16/9 π, 2π}
PEMBAHASAN
Trigonometri
soal pertama
tan (2x + 1/3 π) = 1/3 √3
tan (2x + 1/3 π) = tan (π/6 + kπ)
2x + 1/3 π = π/6 + kπ
2x = π/6 - π/3 + kπ
2x = -π/6 + kπ
x = -π/12 + kπ/2 ... (1)
k bilangan bulat
k = 0 → x = -π/12
k = 1 → x = -π/12 + π/2 = 5π/12
k = 2 → x = -π/12 + π = 11π/12
k = 3 → x = -π/12 + 3π/2 = 17π/12
k = 4 → x = -π/12 + 2π = 23π/12
dan seterusnya
Interval 0 ≤ x ≤ 2π
HP = {5π/12 , 11π/12 , 17π/12, 23π/12}
__
soal kedua
(2 cos 3x + 1)(cos 3x - 1) = 0
cos 3x = -1/2 atau cos 3x = 1
Interval 0° ≤ x ≤ 360°
•
3x = 0° + k.360°
x = 120°k
x = {0° , 120° , 240°, 360°}
cos 3x = -1/2
3x = 120° + k.360°
x = 40° + k.120° ... (1)
3x = 240° + k.360°
x = 80° + k.120° ... (2)
x = {40°, 80°, 160°, 200°, 280°, 320°}
HP = {0°, 40°, 80°, 120°, 160°, 200°, 240°, 280°, 320°, 360°}
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
TRiGoNoMeTRi
-
tan (2x + ¹/₃π) = ¹/₃√3
tan (2x + ¹/₃π) = tan ¹/₃π
2x + ¹/₃π = ¹/₃π
2x = 0
x = α + k . π → rumus
2x = 0π + k . π
x = 1/2 kπ
k = 0 → x = 0π
k = 1 → x = 1/2 π
k = 2 → x = π
k = 3 → x = 3/2π
k = 4 → x = 2π
HP = {0π , 1/2π , π , 3/2 π , 2π}
#
2 cos² 3x - cos 3x - 1 = 0
misal p = cos 3x
2p² - p - 1 = 0
(2p + 1)(p - 1) = 0
maka p = -1/2 ∨ p = 1
jika p = -1/2
cos 3x = cos 2/3 π
3x = 2/3 π
x = α + k . 2π → rumus
3x = 2/3 π + k . 2π
x = 2/9 π + 2/3 kπ
k = 0 → x = 2/9 π
k = 1 → x = 8/9 π
k = 2 → x = 14/9 π
x = -α + k . 2π → rumus
3x = -2/3 π + k . 2π
x = -2/9 π + 2/3 kπ
k = 1 → x = 4/9 π
k = 2 → x = 10/9 π
k = 3 → x = 16/9 π
jika p = 1 , maka :
cos 3x = 1
cos 3x = cos 0
3x = 0
x = α + k . 2π → rumus
3x = 0π + k . 2π
x = 2/3 kπ
k = 0 → x = 0π
k = 1 → x = 2/3 π
k = 2 → x = 4/3 π
k = 3 → x = 2π
maka,
HP = {0π , 2/9 π , 4/9 π , 6/9 π , 8/9 π , 10/9 π, 12/9 π , 14/9 π, 16/9 π, 2π}
-
Verified answer
PEMBAHASAN
Trigonometri
soal pertama
tan (2x + 1/3 π) = 1/3 √3
tan (2x + 1/3 π) = tan (π/6 + kπ)
2x + 1/3 π = π/6 + kπ
2x = π/6 - π/3 + kπ
2x = -π/6 + kπ
x = -π/12 + kπ/2 ... (1)
k bilangan bulat
k = 0 → x = -π/12
k = 1 → x = -π/12 + π/2 = 5π/12
k = 2 → x = -π/12 + π = 11π/12
k = 3 → x = -π/12 + 3π/2 = 17π/12
k = 4 → x = -π/12 + 2π = 23π/12
dan seterusnya
Interval 0 ≤ x ≤ 2π
HP = {5π/12 , 11π/12 , 17π/12, 23π/12}
__
soal kedua
2 cos² 3x - cos 3x - 1 = 0
(2 cos 3x + 1)(cos 3x - 1) = 0
cos 3x = -1/2 atau cos 3x = 1
Interval 0° ≤ x ≤ 360°
•
cos 3x = 1
3x = 0° + k.360°
x = 120°k
k bilangan bulat
x = {0° , 120° , 240°, 360°}
•
cos 3x = -1/2
3x = 120° + k.360°
x = 40° + k.120° ... (1)
3x = 240° + k.360°
x = 80° + k.120° ... (2)
x = {40°, 80°, 160°, 200°, 280°, 320°}
HP = {0°, 40°, 80°, 120°, 160°, 200°, 240°, 280°, 320°, 360°}