F (x) = x^2 + x dan g (x) = 2 / (x + 3) a ) g^2 (3) = { g (3) }^2 = { 2 / (3+3) }^2 = ( 2/6)^2 = (1/3)^2 = 1/9 b) f / g (1) = f (1) / g (1) = (1^2 + 1) / (2/(1+3) = (1 + 1) / (2/4) = 2 /(2/4) = 2/ (1/2) = 4 c) f o g (1) = f { g (1) } = f (2/(1+3) = f (2/4) = f (1/2) = (1/2)^2 + 1/2 = 1/4 + 1/2 = 3/4 d) g o f (3) = g {f (3) } = g (3^2+3) = g (12) = 2 / (12+3) = 2/ 15
Verified answer
F (x) = x^2 + x dan g (x) = 2 / (x + 3)a ) g^2 (3) = { g (3) }^2
= { 2 / (3+3) }^2
= ( 2/6)^2
= (1/3)^2
= 1/9
b) f / g (1) = f (1) / g (1)
= (1^2 + 1) / (2/(1+3)
= (1 + 1) / (2/4)
= 2 /(2/4)
= 2/ (1/2)
= 4
c) f o g (1) = f { g (1) }
= f (2/(1+3)
= f (2/4)
= f (1/2)
= (1/2)^2 + 1/2
= 1/4 + 1/2
= 3/4
d) g o f (3) = g {f (3) }
= g (3^2+3)
= g (12)
= 2 / (12+3)
= 2/ 15