Dział Liczby Zespolone.
Zadanie . Podane liczby zespolone zapisz w postaci trygonometrycznej.
1) Z=
2) Z=sinα - icosα
3) Z=(1+cosα)+isinα
4) Z=1-ictgα
5) Z=(
6) Z=(
Uwaga. Przy zadaniu 5 i 6 należy skorzystać ze wzorów de Moivre'a !
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
1)
z = p(3) + i
I Z I =p [ [ p(3)]^2 + 1^2] = p [ 3 + 1] = p(4) = 2
cos fi = a/ I z I = p(3)/2
sin fi = b/z = 1/2
fi = 30 st = pi/6
zatem
z = 2*( cos (pi/6) + i sin (pi/6))
===============================
5) z = ( p(3) - i )^32
z1 = p(3) - i
I z1 I = p [ ( p(3)^2 + 1^2] = p [3 + 1] = 2
cos fi1 =p(3)/2
sin fi 1 = -1/2
fi 1 = 2 pi - pi/6 = (11/6) pi
z = (z1)^32 = 2^32 *( cos 32*(11/6) pi + i sin 32*(11/6) pi ) =
= 2^32 *( cos ( 58 + 2/3) pi + i sin( 58 + 2/3)pi ) =
= 2^32 *( cos(2/3) pi + i sin (2/3) pi ) =
==================================
= 2^32* ( - 1/2 + i *p(3)/2 )
------------------------------------------------------------------------------
6)
z = ( - 2 + 2 i )^8
z1 = -2 + 2 i
I z1 I = p [ (-2)^2 +2^2] = p(8) = p(4*2) = 2 p(2)
cos fi = -2/ 2p(2) = - 1/p(2) = -p(2)/2
sin fi = 2/2 p(2) = 1/p(2) = p(2)/2
fi = pi/2 + pi/4 = (3/4) pi
z1 = 2 p(2) *( cos (3/4) pi + i sin (3/4) pi )
z = ( z1) ^8 = [ 2 p(2)]^8 *( cos 8*(3/4) pi + i sin 8*(3/4) pi) =
= 2^12 *( cos 6 pi + i sin 6 pi ) = 2^12 *( cos 0 + i sin 0 ) =
=================================================
= 2^12 *( 1 + 9*0 ) = 2^12 = 2^10 * 2^2 = 1024 *4 = 4096
-------------------------------------------------------------------------------