y = (sin x)² + 2.sinx - 3
dy = d((sinx)²) + d(2.sinx) - 3
d((sinx)²) <= sin x = p
d(p²) = 2p . dp <= p = sin x
= 2.sin x . d(sin x)
= 2.sinx.cosx dx
d(2.sinx) = 2.cosx.dx
d(-3) = 0
maka :
dy/dx = 2.sinx.cosx + 2.cosx
= 2.cosx(sinx+1)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
y = (sin x)² + 2.sinx - 3
dy = d((sinx)²) + d(2.sinx) - 3
d((sinx)²) <= sin x = p
d(p²) = 2p . dp <= p = sin x
= 2.sin x . d(sin x)
= 2.sinx.cosx dx
d(2.sinx) = 2.cosx.dx
d(-3) = 0
maka :
dy/dx = 2.sinx.cosx + 2.cosx
= 2.cosx(sinx+1)