Potrzebuje rozwiązania tych zadań matematycznych :
Uporządkuj malejąco liczby:
a) (8√2)³, (16 w potędze pięć drugich), (32√2)²
b) 2⁵⁰⁰, 3³⁰⁰, 5²⁰⁰
Porównaj liczby:
a) 9²⁰ i 3⁴⁰
b) 5¹⁷ i (125∛25)⁵
Oblicz:
a) 81do potęgi¾ =
b) 2do potęgi⁻⅗
c) -√49+ (jedna/dwódziesta siódma)do potęgi⅓ + 8do potęgi ⁻⅔
I taka prośba, aby wszystkie działania były w kolejności, żebym wiedział mniej więcej o co tutaj chodzi - nie chcę samych wyników.
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
a).
b).
a).
b).![5^{17} = 5^{\frac{51}{3}}\\ (125\sqrt[3]{25})^5=(5^3\cdot 25^\frac{1}{3})^5 = (5^3\cdot 5^\frac{2}{3})^5 = (5^{\frac{9}{3}+\frac{2}{3}})^5 = (5^{\frac{11}{3}})^5 = 5^{\frac{55}{3}}\\ czyli\ \ 5^{17}< (125\sqrt[3]{25})^5 5^{17} = 5^{\frac{51}{3}}\\ (125\sqrt[3]{25})^5=(5^3\cdot 25^\frac{1}{3})^5 = (5^3\cdot 5^\frac{2}{3})^5 = (5^{\frac{9}{3}+\frac{2}{3}})^5 = (5^{\frac{11}{3}})^5 = 5^{\frac{55}{3}}\\ czyli\ \ 5^{17}< (125\sqrt[3]{25})^5](https://tex.z-dn.net/?f=5%5E%7B17%7D+%3D+5%5E%7B%5Cfrac%7B51%7D%7B3%7D%7D%5C%5C+%28125%5Csqrt%5B3%5D%7B25%7D%29%5E5%3D%285%5E3%5Ccdot+25%5E%5Cfrac%7B1%7D%7B3%7D%29%5E5+%3D+%285%5E3%5Ccdot+5%5E%5Cfrac%7B2%7D%7B3%7D%29%5E5+%3D+%285%5E%7B%5Cfrac%7B9%7D%7B3%7D%2B%5Cfrac%7B2%7D%7B3%7D%7D%29%5E5+%3D+%285%5E%7B%5Cfrac%7B11%7D%7B3%7D%7D%29%5E5+%3D+5%5E%7B%5Cfrac%7B55%7D%7B3%7D%7D%5C%5C+czyli%5C+%5C+5%5E%7B17%7D%3C+%28125%5Csqrt%5B3%5D%7B25%7D%29%5E5)
a).![81^{\frac{3}{4}} =( \sqrt[4]{81})^3 = 3^3 = 27 81^{\frac{3}{4}} =( \sqrt[4]{81})^3 = 3^3 = 27](https://tex.z-dn.net/?f=81%5E%7B%5Cfrac%7B3%7D%7B4%7D%7D+%3D%28+%5Csqrt%5B4%5D%7B81%7D%29%5E3+%3D+3%5E3+%3D+27)
b).![2^{-\frac{3}{5}} = (\frac{1}{2})^{\frac{3}{5}} = \sqrt[5]{(\frac{1}{2})^3} = \sqrt[5]{\frac{1}{8}} 2^{-\frac{3}{5}} = (\frac{1}{2})^{\frac{3}{5}} = \sqrt[5]{(\frac{1}{2})^3} = \sqrt[5]{\frac{1}{8}}](https://tex.z-dn.net/?f=2%5E%7B-%5Cfrac%7B3%7D%7B5%7D%7D+%3D+%28%5Cfrac%7B1%7D%7B2%7D%29%5E%7B%5Cfrac%7B3%7D%7B5%7D%7D+%3D+%5Csqrt%5B5%5D%7B%28%5Cfrac%7B1%7D%7B2%7D%29%5E3%7D+%3D+%5Csqrt%5B5%5D%7B%5Cfrac%7B1%7D%7B8%7D%7D)
c).![-\sqrt{49}+ (\frac{1}{27})^\frac{1}{3}+ 8^{-\frac{2}{3}} = -7 + \sqrt[3]{\frac{1}{27}} + (\frac{1}{8})^{\frac{2}{3}} = -7 + \frac{1}{3} + (\sqrt[3]{\frac{1}{8}})^2 =\\ = -7 + \frac{1}{3} + (\frac{1}{2})^2 = -7 + \frac{1}{3} + \frac{1}{4} =\frac{-84}{12} + \frac{4}{12} + \frac{3}{12} = \frac{-84 +4+3}{12} = \frac{-77}{12} -\sqrt{49}+ (\frac{1}{27})^\frac{1}{3}+ 8^{-\frac{2}{3}} = -7 + \sqrt[3]{\frac{1}{27}} + (\frac{1}{8})^{\frac{2}{3}} = -7 + \frac{1}{3} + (\sqrt[3]{\frac{1}{8}})^2 =\\ = -7 + \frac{1}{3} + (\frac{1}{2})^2 = -7 + \frac{1}{3} + \frac{1}{4} =\frac{-84}{12} + \frac{4}{12} + \frac{3}{12} = \frac{-84 +4+3}{12} = \frac{-77}{12}](https://tex.z-dn.net/?f=-%5Csqrt%7B49%7D%2B+%28%5Cfrac%7B1%7D%7B27%7D%29%5E%5Cfrac%7B1%7D%7B3%7D%2B+8%5E%7B-%5Cfrac%7B2%7D%7B3%7D%7D+%3D+-7+%2B+%5Csqrt%5B3%5D%7B%5Cfrac%7B1%7D%7B27%7D%7D+%2B+%28%5Cfrac%7B1%7D%7B8%7D%29%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D+%3D+-7+%2B+%5Cfrac%7B1%7D%7B3%7D+%2B+%28%5Csqrt%5B3%5D%7B%5Cfrac%7B1%7D%7B8%7D%7D%29%5E2+%3D%5C%5C+%3D+-7+%2B+%5Cfrac%7B1%7D%7B3%7D+%2B+%28%5Cfrac%7B1%7D%7B2%7D%29%5E2+%3D+-7+%2B+%5Cfrac%7B1%7D%7B3%7D+%2B+%5Cfrac%7B1%7D%7B4%7D+%3D%5Cfrac%7B-84%7D%7B12%7D+%2B+%5Cfrac%7B4%7D%7B12%7D+%2B+%5Cfrac%7B3%7D%7B12%7D+%3D+%5Cfrac%7B-84+%2B4%2B3%7D%7B12%7D+%3D+%5Cfrac%7B-77%7D%7B12%7D)