Dla jakich wartości parametru m funkcja f(x)=(3+m)x2-mx+m ma najmniejszą wartość równą -3?
f(x) = ( 3 + m) x^2 - m x + m
3 + m > 0
m > - 3
------------
delta = ( -m)^2 - 4*( 3 + m)*m = m^2 - 12m - 4 m^2 = - 3 m^2 - 12 m
q = - delta/ (4a) = [ 3 m^2 + 12 m ]/[ 4*( 3 + m)] = [ 3 m^2 + 12 m]/ [ 4 m + 12]
q = - 3
zatem
[ 3 m^2 + 12 m]/ [ 4 m + 12 ] = - 3
3 m^2 + 12 m = - 3*[ 4 m + 12]
3 m^2 + 12 m = - 12 m - 36
3 m^2 + 24 m + 36 = 0 / : 3
m^2 + 8 m + 12 = 0
-----------------------
delta 1 = 8^2 - 4*1*12 = 64 - 48 = 16
p(delty) = p( 16) = 4
m = [ - 8 - 4]/2 = - 12/2 = - 6 < - 3 - odpada
lub
m = [ - 8 + 4]/2 = -4/2 = - 2 > - 3
Odp. Dla m = - 2
==================
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
f(x) = ( 3 + m) x^2 - m x + m
3 + m > 0
m > - 3
------------
delta = ( -m)^2 - 4*( 3 + m)*m = m^2 - 12m - 4 m^2 = - 3 m^2 - 12 m
q = - delta/ (4a) = [ 3 m^2 + 12 m ]/[ 4*( 3 + m)] = [ 3 m^2 + 12 m]/ [ 4 m + 12]
q = - 3
zatem
[ 3 m^2 + 12 m]/ [ 4 m + 12 ] = - 3
3 m^2 + 12 m = - 3*[ 4 m + 12]
3 m^2 + 12 m = - 12 m - 36
3 m^2 + 24 m + 36 = 0 / : 3
m^2 + 8 m + 12 = 0
-----------------------
delta 1 = 8^2 - 4*1*12 = 64 - 48 = 16
p(delty) = p( 16) = 4
m = [ - 8 - 4]/2 = - 12/2 = - 6 < - 3 - odpada
lub
m = [ - 8 + 4]/2 = -4/2 = - 2 > - 3
Odp. Dla m = - 2
==================