Jawab:
fungsi
komposisi dan invers
i) (fog)(x) = f { g(x) }
ii) f(x) = (ax + b) / (cx + d) ---> f⁻¹ (x) = (-dx + b) /(cx - a)
Penjelasan dengan langkah-langkah:
f(x) = (2x - 5) / (x )
g(x) = 2x - 3
i) (fog)(x) = f { g(x)}
(fog)(x)= = f {2x - 3 ]
(fog)(x) = { 2(2x - 3) - 5)} / (2x - 3)
(fog)(x) = (4x - 6 - 5) / (2x - 3)
(fog)(x) = (4x - 11) / (2x - 3)
.
(fog)⁻¹ (x) = (3x - 11)/(2x - 4)
#caralain dilampiran
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Jawab:
fungsi
komposisi dan invers
i) (fog)(x) = f { g(x) }
ii) f(x) = (ax + b) / (cx + d) ---> f⁻¹ (x) = (-dx + b) /(cx - a)
Penjelasan dengan langkah-langkah:
f(x) = (2x - 5) / (x )
g(x) = 2x - 3
i) (fog)(x) = f { g(x)}
(fog)(x)= = f {2x - 3 ]
(fog)(x) = { 2(2x - 3) - 5)} / (2x - 3)
(fog)(x) = (4x - 6 - 5) / (2x - 3)
(fog)(x) = (4x - 11) / (2x - 3)
.
ii) f(x) = (ax + b) / (cx + d) ---> f⁻¹ (x) = (-dx + b) /(cx - a)
(fog)(x) = (4x - 11) / (2x - 3)
(fog)⁻¹ (x) = (3x - 11)/(2x - 4)
#caralain dilampiran