#F
10) lim(x->0) (5x²-2x) / ( sin 5x - tan 2x)
lim (x -0) = (5x²/x - 2x/x) / (sin 5x/x - tan 2x/x)
= (5x - 2) /(5x/x - 2x/x)
= (5x - 2)/(5 - 2)
= (0 - 2)/(5-2)
= - 2/3
11) lim(x->0) (x²-9) /( sin (x - 3)
lim(x->0) ( x -3)( x + 3) / sin (x -3)
lim,(x->0) (x-3)/ sin(x-3) . ( x + 3)
= lim(x->0) 1(x+3)
= 0 + 3
= 3
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
#F
10) lim(x->0) (5x²-2x) / ( sin 5x - tan 2x)
lim (x -0) = (5x²/x - 2x/x) / (sin 5x/x - tan 2x/x)
= (5x - 2) /(5x/x - 2x/x)
= (5x - 2)/(5 - 2)
= (0 - 2)/(5-2)
= - 2/3
11) lim(x->0) (x²-9) /( sin (x - 3)
lim(x->0) ( x -3)( x + 3) / sin (x -3)
lim,(x->0) (x-3)/ sin(x-3) . ( x + 3)
= lim(x->0) 1(x+3)
= 0 + 3
= 3