Dany jest wielomian w(x)=axdo5+bxdo2+c
Znajdz wartości współczynników a,b oraz c jesli wiadomo ze W(pierwiastek z 2)=4 W(-pierwiastek z 2)=-12 i W(0)=-10
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
4=a*(√2)⁵+b*(√2)²+c
-12=a*(-√2)⁵+b*(-√2)²+c
-10=a*0⁵+b*0²+c
4=4√2a+2b+c
-12=-4√2a+2b+c
-10=c
4=4√2a+2b-10
-12=-4√a+2b-10
4√2a+2b=14
-4√2a+2b=-2
--------------
4b=12
b=3
4√2a+2*3=14
4√2a=8
a=2/√2
a=2√2/2
a=√2
W(x) = a x^5 + b x^2 + c
W( p(2)) = 4 i W( -p(2)) = -12 i W( 0) = - 10
Mamy
W( p(2)) = a* ( p(2))^5 + b*( p(2)) ^2 + c = 4a p(2) + 2b + c
W( -p(2)) = a*( -p(2))^5 + b*( -p(2))^2 + c = - 4a p(2) + 2b + c
W( 0) = a*0 + b*0 + c = c
-------------------------------
c = - 10
4ap(2) + 2b - 10 = 4
-4 a p(2) + 2b - 10 = -12
-------------------------------- II i III dodajemy stronami
4b - 20 = - 8
4b = 20 - 8 = 12
b = 3
====
4 a p(2) = 4 + 10 - 2b = 14 - 2*3 = 14 - 6 = 8 / : 4 p(2)
a = p(2)
=======
Odp. a = p(2), b = 3, c = - 10
================================================