" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
A(1,2) i B(5,-1) C(x,y) - ?
x - ? y - ?
P - ? pole Δ ABC
h - wysokość Δ ABC
|AB| = |BC| = |AC| = a
|AB|² = (5 - 1)² + (-1 - 2)² = 25
a = √25 = 5
P = a*h/2
h = a*sin(45º) = (5*√2)/2
P = 5*(5*√2)/2 = 12,5√2
|BC|² = (x - 5)² + (y + 1)² = 25
|AC|² = (x - 1)² + (y - 2)² = 25
{(x - 5)² + (y + 1)² = 25
{(x - 1)² + (y - 2)² = 25
x² - 10x + 25 + y² + 2y + 1 = 25
x² - 2x + 1 + y² - 4y + 4 = 25
x² - 10*x + y² + 2*y + 1 = 0
x² - 2*x + y² - 4*y -20 = 0
-8x + 6y + 21 = 0
6y = 8x - 21
y = 4x/3 - 7/2
x² - 10*x + (4x/3 - 7/2)² + 2*(4x/3 - 7/2) + 1 = 0
x² - 10*x + 16x²/9 - 28x/3 + 49/4 + 8x/3 - 6 = 0
36x² - 360*x + 64x² - 336x + 441 + 96x - 216 = 0
100x² - 600x + 225 = 0
x² - 6x + 2,25 = 0
4x² - 24x + 9 = 0
D= 576 - 144 = 432
√D = √432 = 12√3
x₁ = (24 - 12√3)/8 = 3 - 1,5√3
x₂ = (24 - 12√3)/8 = 3 + 1,5√3
y = 4x/3 - 7/2
y₁ = 4(3 - 1,5√3)/3 - 7/2 = 4 - 2√3 - 3,5 = 0,5 - 2√3
y₂ = 4(3 + 1,5√3)/3 - 7/2 = 4 + 2√3 - 3,5 = 0,5 + 2√3
x₁ = 3 - 1,5√3 ≈ 0,4
y₁ = 0,5 - 2√3 ≈ −2,96
x₂ = 3 + 1,5√3 ≈ 5,6
y₂ = 0,5 + 2√3 ≈ 3,964
(0,4 − 5)² + (−2,96 + 1)² = 25,00
(5,6 − 5)² + (3,964 + 1)² = 25,00
P = 12,5*√2 pole Δ ABC
C(0,4; −2,96)
lub
C(5,6; 3,964)