Dane są punkty A = (-1,4), B = (5,-3) oraz prosta l: y= -2x +1. Na prostej l znajdź punkt C tak, aby pole trójkąta ABC było równe 6.
bardzo prosze o pomoc,
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Obliczam długość boku AB:
I BC I^2 = ( 0 - (-3))^2 + ( 4 - 1)^2 = 3^2 + 3^2 = 9 + 9 = 9*2
więc
I BC I = 3 p(2)
Pole trójkąta ABC
P = 6
(1/2)*I BC I * h = 6 / * 2
I BC I * h = 12
3 p(2) * h = 12
h = 12 : 3 p(2) = 4/p(2) = 2 p(2)
==============================
y = a x + b
1 = - 3a + b
4 = 0*a + b => b = 4
-------------------------
1 = - 3 a + 4
-3 = - 3a
a = 1
y = x + 4
----------------
x - y + 4 = 0
========================
d = I A *x0 + B* y0 + C I / p( A^2 + B^2)
A = 1
B = - 1
C = 4
A = (x0; y0) - punkt prostej o równaniu y = 2x - 1
y0 = 2*x0 - 1
A = ( x0; 2 x0 - 1)
h = 2 p(2)
I 1*x0 - 1*(2x0 - 1) + 4 I / p( 1^2 + (-1)^2 ) = 2 p(2)
I x0 - 2 x0 + 1 + 4 I / p(2) = 2 p(2) / * p(2)
I - x0 + 5 I = 4
x0 = 1 y0 = 2*1 - 1 = 2 - 1 = 1
lub
x0 = 9 y0 = 2*9 -1 = 18 - 1 = 17
Odp. A = (1; 1) lub A = ( 9; 17 )