dane jest rownanie ax^2+bx+1=0 . Ze zbioru A={2,5,7} wybieramy kolejno , bez zwracania dwie liczby. Pierwsza z nich to współczynnik a w równaniu , natomiast druga to współczynnik b . Oblicz jakie jest prawdopodobieństwo , że równanie nie będzie miało rozwiązania.
ABPJPJP
a z czego wynika że a musi być większe od b ?
Rastlinek
z delty, aby równanie nie miało rozwiązania delta musi być ujemna, a będzie ona ujemna tylko wtedy kiedy a>b, jak a=2 i b=5 to delta=25-4*2*1=17 więc równanie ma 2 rozwiązania.
ABPJPJP
nie wiem czemu nie mogę dać naj :( Liczy się czas czy ,że tylko jedna odp. jest.