" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
zad 1
a)
√32 + √8 - 3√18
wykorzystujemy wzór √ab = √a * √b
√32 + √8 - 3√18 = √(16 * 2) + √(4 * 2) - 3√(9 * 2) = √16 * √2 + √4 * √2 - 3√9 * √2 =
wykorzystujemy wzór
ab + ac - ad - zauważ , że wszędzie występuje a więc można wyciągnąć a przed nawias i będzie a(b + c + d) - naszym a jest √2
√32 + √8 - 3√18 = √(16 * 2) + √(4 * 2) - 3√(9 * 2) = √16 * √2 + √4 * √2 - 3√9 * √2 =√2(√16 + √4 - 3√9) = √2(4 + 2 - 3 * 3) = √2(4 + 2 - 9) = √2 * - 3 = - 3√2
b)
√18 * √50 = √(9 * 2) * √(25 * 2) = √9 * √2 * √25 * √2 = 3 * √2 * 5 * √2 =
= 15√2 * √2 = 15 * √(2 * 2) = 15 * √4 = 15 * 2 = 30
c)
6√12 - 3√27 - 2√75 = 6√(4 * 3) - 3√(9 * 3) - 2√(25 * 3) = 6√4 * √3 - 3√9 * √3 -
- 2√25 * √3 = 6 * 2 * √3 - 3 * 3 * √3 - 2 * 5 * √3 = 12√3 - 9√3 - 10√3 = - 7√3
d)
√1 9/16 = √25/16 = √25/√16 = 5/4 = 1 i 1/4
e)
6√24 - 3√54 - 2√150 = 6√(4 * 6) - 3√(9 * 6) - 2√(25 * 6) = 6√4 * √6 - 3√9 * √6 -
- 2√25 * √6 = 6 * 2 * √6 - 3 * 3 * √6 - 2 * 5 * √6 = 12√6 - 9√6 - 10√6 = - 7√6
f)
(3√12 - 5√48) * (- 3√3) = 3√12 * - 3√3 - 5√48 * - 3√3 = - 9√36 + 15√144 =
= - 9 * 6 + 15 * 12 = - 54 + 180 = 126
g)
√27 - √12 + √48 = √(9 * 3) - (4 * 3) + √(16 * 3) = √9 * √3 - √4 * √3 + √16 * √3 =
= 3√3 - 2√3 + 4√3 = 5√3
h)
∛- 27 = - 3
i)
√32/√2 = √(32/2) = √16 = 4
j)
√2 + √8 = √2 + √(4 * 2) = √2 + √4 * √2 = √2 + 2√2 = 3√2
zad 2
(2⁴)⁻² * 2⁸ = 2⁻⁸ * 2⁸ = 2⁻⁸⁺⁸ = 2⁰ = 1
a)
(- 3)⁻³ = (- 1/3)³ = - 1/27
b)
(2/3)³ * (1 1/2)³ = 8/27 * (3/2)³ = 8/27 * 27/8 = 1/1 = 1
c)
(2³)⁻¹ * 0,5²/(2²)³ * 4⁻² = 2⁻³ * 0,25/2⁶ * (1/4)² = 1/8 * 1/4 : 64 * 1/16 = 1/32 : 4 =
= 1/32 * 1/4 = 1/128
d)
[(- 3)²]³/(- 3)⁴ = (9)³/81 = 729/81 = 9
e)
(- 3)⁻³ = (- 1/3)³ = - 1/27
f)
[(1/3)⁵ : 3⁴] : (1/3)⁸ = [1/3⁵ * 3⁴] * 3⁸ = 1/3 * 3⁸ = 3⁷ = 2187
g)
14¹⁴ : 14¹⁵ = 14¹⁴⁻¹⁵ = 14⁻¹ = 1/14
h)
ponieważ { }⁰ więc każda liczba podniesiona do potęgi 0 = 1