April 2019 0 14 Report
Cześć! Czy mógłby mi ktoś wytłumaczyć to zadanko?

✎7.162 Oblicz granicę ciągu o wyrazie ogólnym  a_{n}, jeśli:
a) a_{n} = \frac{2n+3}{5}
b) a_{n} =\frac{3n^{2}-3n+7}{n-25}
c) a_{n} =\frac{-2n^{4} +5n-7}{3n^{2}-6n}
d) a_{n} =\frac{(n-2)(3-n)}{2n+7}
e) a_{n} =\frac{-2(n-3)(n+2)(1-n)}{(2n-5)(n+7)(3-7n)}
f) a_{n} =\frac{(2n-3)^{2} - (n+2)^{2}}{3n+1-n^{2}}
g) a_{n} =\frac{4n^{5}-3n^{4}+10n^{2}-7}{(2n^{2}-8)^{2}}
h) a_{n} =\frac{3n^{4}-2n^{5}-3n^{6}}{n^{4}+3n^{3}-5n^{2}-3}

Recommend Questions



Life Enjoy

" Life is not a problem to be solved but a reality to be experienced! "

Get in touch

Social

© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.