La media muestral es el estimador usual de una media poblacional. Sin embargo, diferentes muestras escogidas de la misma población tienden en general a dar distintos valores de medias muestrales. El error estándar de la media (es decir, el error debido a la estimación de la media poblacional a partir de las medias muestrales) es la desviación estándar de todas las posibles muestras (de un tamaño dado) escogidos de esa población. Además, el error estándar de la media puede referirse a una estimación de la desviación estándar, calculada desde una muestra de datos que está siendo analizada al mismo tiempo.
En aplicaciones prácticas, el verdadero valor de la desviación estándar (o del error) es generalmente desconocido. Como resultado, el término "error estándar" se usa a veces para referirse a una estimación de esta cantidad desconocida. En tales casos es importante tener claro de dónde proviene, ya que el error estándar es sólo una estimación. Desafortunadamente, esto no es siempre posible y puede ser mejor usar una aproximación que evite usar el error estándar, por ejemplo usando la estimación de máxima verosimilitud o una aproximación más formal derivada de los intervalos de confianza. Un caso bien conocido donde se pueda usar de forma apropiada puede ser en la distribución t de Student para proporcionar un intervalo de confianza para una media estimada o diferencia de medias. En otros casos, el error estándar puede ser usado para proveer una indicación del tamaño de la incertidumbre, pero su uso formal o semi-formal para proporcionar intervalos de confianza o test debe ser evitado a menos que el tamaño de la muestra sea al menos moderadamente grande. Aquí el concepto "grande" dependerá de las cantidades particulares que vayan a ser analizadas.
En análisis de regresión, el término error estándar o error típico es también usado como la media de las diferencias entre la estimación por mínimos cuadrados y los valores dados de la muestra 2 3
La media muestral es el estimador usual de una media poblacional. Sin embargo, diferentes muestras escogidas de la misma población tienden en general a dar distintos valores de medias muestrales. El error estándar de la media (es decir, el error debido a la estimación de la media poblacional a partir de las medias muestrales) es la desviación estándar de todas las posibles muestras (de un tamaño dado) escogidos de esa población. Además, el error estándar de la media puede referirse a una estimación de la desviación estándar, calculada desde una muestra de datos que está siendo analizada al mismo tiempo.
En aplicaciones prácticas, el verdadero valor de la desviación estándar (o del error) es generalmente desconocido. Como resultado, el término "error estándar" se usa a veces para referirse a una estimación de esta cantidad desconocida. En tales casos es importante tener claro de dónde proviene, ya que el error estándar es sólo una estimación. Desafortunadamente, esto no es siempre posible y puede ser mejor usar una aproximación que evite usar el error estándar, por ejemplo usando la estimación de máxima verosimilitud o una aproximación más formal derivada de los intervalos de confianza. Un caso bien conocido donde se pueda usar de forma apropiada puede ser en la distribución t de Student para proporcionar un intervalo de confianza para una media estimada o diferencia de medias. En otros casos, el error estándar puede ser usado para proveer una indicación del tamaño de la incertidumbre, pero su uso formal o semi-formal para proporcionar intervalos de confianza o test debe ser evitado a menos que el tamaño de la muestra sea al menos moderadamente grande. Aquí el concepto "grande" dependerá de las cantidades particulares que vayan a ser analizadas.
En análisis de regresión, el término error estándar o error típico es también usado como la media de las diferencias entre la estimación por mínimos cuadrados y los valores dados de la muestra 2 3