" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
f(x) = 2x² + bx + c
a)
x₀ = 2
f(x) = 2 *(x - 2)² = 2(x² - 4x + 4) = 2x² - 8x + 8
b = -8, c = 8
b)
q = 3
x = 1
p = x = 1
f(x) = a(x - p)² + q - postać kanoniczna
f(x) = 2(x - 1)² + 3 = 2(x² - 2x + 1) + 3 = 2x² - 4x + 2 + 3 = 2x² - 4x + 5
b = -4, c = 5
c)
x₁ = 1, x₂ = 4
f(x) = a(x - x₁)(x - x₂) - postać iloczynowa
f(x) = 2(x - 1)(x - 4) = 2(x² - 4x - x + 4) = 2(x² - 5x + 4) = 2x² - 10x + 8
b = -10, c = 8
d)
ZW = < -1; +∞)
ZW = < q; +∞)
q = -1
P =(0;1)
f(0) = 1
f(x) = a(x - p)² + q
i
f(0) = 2p² - 1 = 1
2p² = 2
p² = 1
p = -1 v p = 1
f(x) = 2(x + 1)² -1 v f(x) = 2(x - 1)² - 1
f(x) = 2(x² + 2x + 1) -1 f(x) = 2(x² - 2x + 1) -1
f(x) = 2x² + 4x + 2 - 1 f(x) = 2x² - 4x + 2 - 1
f(x) = 2x² + 4x + 1 v f(x) = 2x² - 4x + 1
b = 4, c = 1 v b = -4, c = 1
14.
x² - 6x + c = 0
x₁ = 3 - √2
(3 - √2)² - 6(3 - √2) + c = 0
9 - 6√2 + 2 - (18 - 6√2) + c = 0
9 - 6√2 - 18 + 6√2 + c = 0
c - 7 = 0
c = 7
x² - 6x + 7 = 0
Δ = b² - 4ac = 36 - 28 = 8
√Δ = √(4*2) = 2√2
x₂ = (6 + 2√2)/2
x₂ = 3 + √2