" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
1 - cos2A - cos2B + cos2C = 4sinA.sinB.sinC
cos2A + cos2B - cos2C = 1 - 4sinA.sinB.sinC
akan kita buktikan ruas kiri dan ruas kanan pada persamaan di atas sama!
cos2A + cos2B - cos2C
= cos2A - 2sin[(2B + 2C)/2].sin[(2B - 2C)/2]
= cos2A - 2sin(B + C).sin(B - C)
kita tahu bahwa :
A + B + C = 180°
=> B + C = 180° - A
maka,
= cos2A - 2sin(180° - A ).sin(B - C)
= cos2A - 2(sin180°.cosA - sinA.cos180°).sin(B - C)
= cos2A + 2sinA.sin(B - C)
= 1 - 2sin²A + 2sinA.sin(B - C)
= 1 - 2sinA [sinA - sin(B - C)]
= 1 - 2sinA ( 2cos[(A + B - C)/2].sin[(A - B + C)/2] )
= 1 - 4sinA.cos( A + B - C )/2.sin(A - B + C ) /2
padahal:
A + B + C = 180°
=> A + B = 180° - C
dan A + C = 180° - B
maka,
= 1 - 4sinA.cos[(180° - C - C)/2].sin[(180° - B - B)/2]
= 1 - 4sinA.cos(-2C)/2.sin(-2B)/2
= 1 - 4sinA.cos(-C).sin(-B)
= 1 - 4sinA.sinB.cosC
terbukti
semoga membantu ya :)