boki trójkąta zawierają się w prostych 4x+3y-21=0 ; x+2y-4=0 ;3x+y-7=0
wyznacz współżędne wierzchołków tego trójkonta i oblicz jego pole
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
4x + 3y - 21 = 0
x +2y - 4 = 0 => x = 4 - 2y
-------------------------
4*( 4 - 2y) +3y =21
16 - 8y + 3y = 21
- 5y = 5
y = - 1
--------
x = 4 - 2*(-1) = 4 + 2 = 6
-------------------------------
A = ( 6 ; - 1)
==============
4x + 3y -21 = 0
3x + y - 7 = 0 => y = 7 - 3x
--------------------------------------
4x + 3*( 7 - 3x) - 21 =0
4x + 21 - 9x -21 = 0
- 5x = 0
x = 0
---------
y = 7 -3*0 = 7 - 0 = 7
--------------------------
B = ( 0; 7 )
===========
x + 2y - 4 = 0
3x + y - 7 = 0 => y = 7 - 3x
----------------------------------
x + 2*( 7 - 3x) - 4 = 0
x + 14 - 6x - 4 = 0
- 5x = - 10
x = 2
-----------
y = 7 - 3*2 = 7 - 6 = 1
------------------------------
C = ( 2 ; 1)
===========
Odp. A = ( 6; - 1), B = ( 0; 7), C = ( 2; 1)
=========================================
I AB I^2 = ( 0 - 6)^2 + ( 7 - (-1))^2 = (-6)^2 + 8^2 = 36 + 64 = 100
zatem
I AB I = p(100) = 10
------------------------
pr AB : 4x + 3y - 21 = 0
A = 4, B = 3, C = -21
C = ( 2; 1)
x0 = 2; y0 = 1
h - wysokość trójkąta ABC , to odległość punktu C od pr AB
Obliczamy z wzoru:
h = I A x0 + B y0 + C I / p( A^2 + b^2)
Po podstawieniu mamy
h = I 4*2 + 3*1 + (-21) I / p ( 4^2 + 3^2 )
h = I 8 + 3 - 21 I/ p( 16 + 9)
h = I - 10 I / p ( 25)
h = 10 / 5 = 2
==============
Pole trójkata ABC
P = 0,5 * I AB I *h
Odp.
P = 0,5 *10 * 2 = 10
===============================