" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
= ((5 - x)(2 + 2x))/2
= (10 + 10x - 2x - 2x²)/2
= (-2x² + 8x + 10)/2
= -x² + 4x + 5
Luas maksimum saat L' = 0
-2x + 4 = 0
x = 2
maka L(2) = -2² + 4(2) + 5
= 9
maka luas maksimum adalah 9 cm²
L(x) = 1/2(5 - x)(2 + 2x)
= 1/2(10 + 10x - 2x - 2x²)
= 1/2(10 + 8x - 2x²)
= - x² + 4x + 5
Luas maksimum didapat jika L'(x) = 0, maka
-2x + 4 = 0 ⇔ -2x = -4 ⇔ x = -4/-2 ⇔ x = 2 substitusikan ke L(x), maka
L(2) = -(2)² + 4(2) + 5
= - 4 + 8 + 5
= 9
Jadi, luas maksimum untuk belah ketupat dgn panjang diagonalnya 3 cm dan 6 cm adaah 1/2(3)(6) = 9 cm²