Odpowiedź:
usuwanie niewymierności z mianownika ułamka
a) 7/√2 = 7/√2 * √2/√2 = 7√2/(√2 * √2) = 7√2/2 = 3,5√2
b) 2/(3 - √5) = 2/(3 - √5) * (3 + √5)/(3 + √5) =
= 2(3 + √5)/[(3 - √5)(3 + √5)] = 2(3 + √5)/(9 - 5) = 2(3 + √5)/4 =
= (3 + √5)/2
Oblicz
√12 + √75 + √24 + √96 = √(4 * 3) + √(25 * 3) + √(4 * 6) + √(16 * 6) =
= 2√3 + 5√3 + 2√6 + 4√6 = 7√3 + 6√6
(6 + √3)² = 36 + 12√3 + 3 = 39 + 12√3
(x + 11)² = x² + 22x + 121
(2a - 1)² = 4a² - 4a + 1
(2 - √3)² = 4 - 4√3 + 3
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
usuwanie niewymierności z mianownika ułamka
a) 7/√2 = 7/√2 * √2/√2 = 7√2/(√2 * √2) = 7√2/2 = 3,5√2
b) 2/(3 - √5) = 2/(3 - √5) * (3 + √5)/(3 + √5) =
= 2(3 + √5)/[(3 - √5)(3 + √5)] = 2(3 + √5)/(9 - 5) = 2(3 + √5)/4 =
= (3 + √5)/2
Oblicz
√12 + √75 + √24 + √96 = √(4 * 3) + √(25 * 3) + √(4 * 6) + √(16 * 6) =
= 2√3 + 5√3 + 2√6 + 4√6 = 7√3 + 6√6
Oblicz
(6 + √3)² = 36 + 12√3 + 3 = 39 + 12√3
(x + 11)² = x² + 22x + 121
(2a - 1)² = 4a² - 4a + 1
(2 - √3)² = 4 - 4√3 + 3