Szczegółowe wyjaśnienie:
Korzystamy z wzorów redukcyjnych.
Ćw. 2
[tex]\underline{sin165^{o} = sin(180^{o}-15^{o}) = sin15^{o}}\\\\cos112^{o} = cos(180^{o}-68^{o}) = -cos68^{o}\\\\tg140^{o} = tg(180^{o}-40^{o}) = -tg40^{o}\\\\\boxed{Odp. \ sin165^{o}}[/tex]
Ćw. 3
[tex]cos150^{o}+sin60^{o} = cos(90^{o}+60^{o})+sin60^{o} = -sin60^{o}+sin60^{o} =\boxed{0}\\\\\boxed{Odp. \ D. \ 0}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
Szczegółowe wyjaśnienie:
Korzystamy z wzorów redukcyjnych.
Ćw. 2
[tex]\underline{sin165^{o} = sin(180^{o}-15^{o}) = sin15^{o}}\\\\cos112^{o} = cos(180^{o}-68^{o}) = -cos68^{o}\\\\tg140^{o} = tg(180^{o}-40^{o}) = -tg40^{o}\\\\\boxed{Odp. \ sin165^{o}}[/tex]
Ćw. 3
[tex]cos150^{o}+sin60^{o} = cos(90^{o}+60^{o})+sin60^{o} = -sin60^{o}+sin60^{o} =\boxed{0}\\\\\boxed{Odp. \ D. \ 0}[/tex]