BARDZO PROSZĘ O ROZWIĄZANIE WSZYSTKICH ZADAŃ ;) POTRZEBNE NA JUTRO ;D
Zad.1 Na zlecenie klienta makler ma kupić akcje spółek A i B za 1000 zł. Cena jednej akcji spółki A jest równa 4,25 zł, a jedna akcja spółki B kosztuje 6,75 zł. Ile maksymalnie akcji każdego rodzaju makler może kupić , jeśli tańszych ma być o 10 więcej niż droższych?
Zad.2 Liczby mieszkańców (w przybliżeniu) Polski , Czech , Słowacji są w stosunku 490:103:54. Różnica liczb mieszkańców w Czechach i Słowacji jest równa 4,9 mln osób. Ilu mieszkańców jest w każdym z tych krajów?
Zad.3 Zmieszano dwa gatunki cukierków w różnych cenach w stosunku 2:3 i uzyskano mieszankę w cenie 13,80 zł. Gdyby te cukierki zmieszano w stosunku 1:3, wówczas cena mieszanki wynosiłaby 14,25 zł . Oblicz cenę każdego gatunku cukierków.
Zad.4 Motorówka płyneła z prądem rzeki od przystani A do przystani B przez 40 minut ,a wracała 56 minut. Oblicz prędkość motorówki i prędkość prądu rzeki, jeżeli przystanie A i B są odległe o 14 km.
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Zad.1
x- liczba akcji społki A
y- liczba akcji spółki B
4,25x + 6,75y= 1000
x +10= y
4,25 ( x + 10 ) + 6,75x = 1000
4,25x + 42,5 + 6,75x = 1000
11x = 957,5
x = 87
y= 87 +10 = 97
Zad.2
103x-54x=4,9
49x=4,9
x=0,1
490*0,1= 49 mln
103*0,1= 10,3 mln
54*0,1=5,4 mln
Zad.3 Zmieszano dwa gatunki cukierków w różnych cenach w stosunku 2:3 i uzyskano mieszankę w cenie 13,80 zł. Gdyby te cukierki zmieszano w stosunku 1:3, wówczas cena mieszanki wynosiłaby 14,25 zł . Oblicz cenę każdego gatunku cukierków.
x - cukierki pierwszego gatunku
y - drugiego
(2x+3y)/5=13.8
(x+3y)/4=14.25
2x+3y=69
x+3y=57
x=12
y=15
Zad.4
Z wzoru s=vt wynika, że
gdzie i prędkości motorówki i rzeki odpowiednio (w km/h). Dodając równania stronami (żeby skrócić ) mamy
Z pierwszego równania mamy
Odpowiedź: 3km/h i 18km/h