bardzo ładnie proszę o rozwiązanie oraz o wytłumaczenie krok po kroku! Z góry dziękuje ;)
D: (x - 2)² > 0 i (x - 4)² > 0
x ∈ R \ { 2] i x ∈R \ {4}
D: x ∈ R \ [2, 4}
log3 (x - 2)² + log3 (x - 4)² = 0
loga x + loga y = loga (x * y) ----- wzór
log3 [ (x - 2)² * (x - 4)² ] = log3 3^0 bo log3 3^0 = 0 * log3 3 = 0 * 1 = 0
opuszczamy logarytmy i otrzymujemy
(x - 2)² * (x - 4)²= 3^0
(x - 2)² * (x - 4)² = 1
(x - 2)² * (x - 4)² - 1 = 0
[ (x - 2)(x - 4) ]² - 1² = 0
[ (x - 2)(x - 4) - 1 ] [ (x - 2)(x - 4) + 1 ] = 0
(x - 2)(x - 4) - 1 = 0 lub (x - 2)(x - 4) + 1 = 0
x² - 4x - 2x + 8 - 1 = 0 lub x² - 4x - 2x + 8 + 1 = 0
x² - 6x + 7 = 0 lub x² - 6x + 9 = 0
Δ = 36 - 28 = 8 ( x - 3)² = 0
√Δ = 2√2 x - 3 = 0
x1 = (6 - 2√2)/2 = 3 - √2 ∈ D x = 3 ∈ D
x2 = (6 + 2√2)/2 = 3 + √2 ∈ D
odp. x = 3 + √2 ; x = 3 - √2 ; x = 3
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
D: (x - 2)² > 0 i (x - 4)² > 0
x ∈ R \ { 2] i x ∈R \ {4}
D: x ∈ R \ [2, 4}
log3 (x - 2)² + log3 (x - 4)² = 0
loga x + loga y = loga (x * y) ----- wzór
log3 [ (x - 2)² * (x - 4)² ] = log3 3^0 bo log3 3^0 = 0 * log3 3 = 0 * 1 = 0
opuszczamy logarytmy i otrzymujemy
(x - 2)² * (x - 4)²= 3^0
(x - 2)² * (x - 4)² = 1
(x - 2)² * (x - 4)² - 1 = 0
[ (x - 2)(x - 4) ]² - 1² = 0
[ (x - 2)(x - 4) - 1 ] [ (x - 2)(x - 4) + 1 ] = 0
(x - 2)(x - 4) - 1 = 0 lub (x - 2)(x - 4) + 1 = 0
x² - 4x - 2x + 8 - 1 = 0 lub x² - 4x - 2x + 8 + 1 = 0
x² - 6x + 7 = 0 lub x² - 6x + 9 = 0
Δ = 36 - 28 = 8 ( x - 3)² = 0
√Δ = 2√2 x - 3 = 0
x1 = (6 - 2√2)/2 = 3 - √2 ∈ D x = 3 ∈ D
x2 = (6 + 2√2)/2 = 3 + √2 ∈ D
odp. x = 3 + √2 ; x = 3 - √2 ; x = 3