soal8 :
u = 1 + x²
du = 2x.dx
dx = [tex]\frac{1}{2x}[/tex]du
x² = (u - 1)
x = √(u-1)
x⁴dx = (u-1)²[tex]\frac{1}{2x}du[/tex]
=
[tex](u-1)^2\frac{1}{2\sqrt{u-1}}du[/tex]
= ½[tex](u-1)^{\frac{3}{2}}[/tex]du
[tex]\int{x^4\sqrt{1+x²}}dx = [/tex]
[tex]\int{\sqrt{u}}\frac{1}{2}(u-1)^{\frac{3}{2}}[/tex]du
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
soal8 :
u = 1 + x²
du = 2x.dx
dx = [tex]\frac{1}{2x}[/tex]du
x² = (u - 1)
x = √(u-1)
x⁴dx = (u-1)²[tex]\frac{1}{2x}du[/tex]
=
[tex](u-1)^2\frac{1}{2\sqrt{u-1}}du[/tex]
= ½[tex](u-1)^{\frac{3}{2}}[/tex]du
[tex]\int{x^4\sqrt{1+x²}}dx = [/tex]
[tex]\int{\sqrt{u}}\frac{1}{2}(u-1)^{\frac{3}{2}}[/tex]du