integral
∫xⁿ dx = 1/(n+1) xⁿ⁺¹ + C
cara 1
u = x + 1 → du = dx
x = u - 1
∫x(x + 1)² dx
= ∫u²(u - 1) du
= ∫(u³ - u²) du
= 1/4 u⁴ - 1/3 u³ + C
= 1/4 (x + 1)⁴ - 1/3 (x + 1)³ + C
= 1/12 (x + 1)³ [3(x + 1) - 4] + C
= 1/12 (x + 1)³(3x - 1) + C
•
cara 2
= ∫x(x² + 2x + 1) dx
= ∫(x³ + 2x² + x) dx
= 1/4 x⁴ + 2/3 x³ + 1/2 x² + C
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
integral
∫xⁿ dx = 1/(n+1) xⁿ⁺¹ + C
cara 1
u = x + 1 → du = dx
x = u - 1
∫x(x + 1)² dx
= ∫u²(u - 1) du
= ∫(u³ - u²) du
= 1/4 u⁴ - 1/3 u³ + C
= 1/4 (x + 1)⁴ - 1/3 (x + 1)³ + C
= 1/12 (x + 1)³ [3(x + 1) - 4] + C
= 1/12 (x + 1)³(3x - 1) + C
•
cara 2
∫x(x + 1)² dx
= ∫x(x² + 2x + 1) dx
= ∫(x³ + 2x² + x) dx
= 1/4 x⁴ + 2/3 x³ + 1/2 x² + C