[tex]\boxed{\int {u} \, dv=u\cdot v -\int {v} \, du}[/tex]
7. [tex]\int {x(2x-1)^{-3} } \, dx=\int {u} \, dv[/tex]
u = x
du/dx = 1
du = dx
[tex]dv=(2x-1)^{-3}\\\\v=\int{(2x-1)^{-3}} \, dx \\\\v=\frac{1}{-2} \cdot \frac{1}{2}(2x-1)^{-2} \\\\v=-\frac{1}{4} (2x-1)^{-2}[/tex]
[tex]\int {x(2x-1)^{-3} } \, dx\\\\=u\cdot v-\int {v} \, du\\\\=x\cdot (-\frac{1}{4})(2x-1)^{-2} -\int { (-\frac{1}{4})(2x-1)^{-2} } \, dx \\ \\=-\frac{x}{4}(2x-1)^{-2}+\frac{1}{4} \int {(2x-1)^{-2} } \, dx\\\\=-\frac{x}{4}(2x-1)^{-2}+\frac{1}{4}\cdot \frac{1}{-1}\cdot \frac{1}{2}(2x-1)^{-1} +C\\ \\=-\frac{x}{4}(2x-1)^{-2}-\frac{1}{8}(2x-1)^{-1} +C\\\\\boxed{=-\frac{x}{4(2x-1)^{2}} -\frac{1}{8(2x-1)} +C}[/tex]
8. [tex]\int {x^{4} \sqrt{1+x^{2} } } \, dx=\int {u} \, dv[/tex]
u = x⁴
du/dx = 4x³
du = 4x³ dx
[tex]dv=\sqrt{1+x^{2} } \\\\dv=(1+x^{2} )^{\frac{1}{2} } \\\\v=\int {(1+x^{2} )^{\frac{1}{2} } } \, dx \\\\v=\frac{1}{\frac{3}{2} } (1+x^{2} )^{\frac{3}{2} }\\\\v=\frac{2}{3} (1+x^{2} )^{\frac{3}{2}}[/tex]
[tex]\int {x^{4} \sqrt{1+x^{2} } } \, dx\\\\=x^{4}\cdot \frac{2}{3} (1+x^{2} )^{\frac{3}{2}}-\int {\frac{2}{3} (1+x^{2} )^{\frac{3}{2}} 4x^{3} } \, dx\\\\=\frac{2x^{4} }{3} (1+x^{2} )^{\frac{3}{2}}-\frac{8}{3} \int {x^{3} (1+x^{2} )^{\frac{3}{2}} } \, dx[/tex]
Ada integral parsial lagi di sini, maka dimisalkan jadi u dv lagi
[tex]\int {x^{3} (1+x^{2} )^{\frac{3}{2}} } \, dx[/tex]
u = x³
du/dx = 3x²
du = 3x² dx
[tex]dv= (1+x^{2} )^{\frac{3}{2}}\\\\v=\int { (1+x^{2} )^{\frac{3}{2}}} \, dx \\\\v=\frac{1}{\frac{5}{2} }\cdot \frac{1}{1} (1+x^{2} )^{\frac{5}{2}}\\\\v=\frac{2}{5} (1+x^{2} )^{\frac{5}{2}}[/tex]
[tex]\int {x^{3} (1+x^{2} )^{\frac{3}{2}} } \, dx\\\\= x^{3} \cdot \frac{2}{5} (1+x^{2} )^{\frac{5}{2}} -\int {\frac{2}{5} (1+x^{2} )^{\frac{5}{2}}} \, 3x^{2} dx\\\\=\frac{2x^{3} }{5} (1+x^{2} )^{\frac{5}{2}}-\frac{6}{5} \int {x^{2} (1+x^{2} )^{\frac{5}{2}}} \, dx[/tex]
Ada integral parsial lagi, dimisalkan jadi u dv
[tex]\int {x^{2} (1+x^{2} )^{\frac{5}{2}}} \, dx[/tex]
u = x²
du/dx = 2x
du = 2x dx
[tex]dv=(1+x^{2} )^{\frac{5}{2} } \\\\v=\int {(1+x^{2} )^{\frac{5}{2} } } \, dx \\\\v=\frac{1}{\frac{7}{2} } (1+x^{2} )^{\frac{7}{2} }\\\\v=\frac{2}{7} (1+x^{2} )^{\frac{7}{2} }[/tex]
[tex]\int {x^{2} (1+x^{2} )^{\frac{5}{2}}} \, dx\\\\=x^{2} \cdot \frac{2}{7} (1+x^{2} )^{\frac{7}{2} } -\int {\frac{2}{7} (1+x^{2} )^{\frac{7}{2} }} 2x\, dx \\\\=\frac{2x^{2} }{7} (1+x^{2} )^{\frac{7}{2} }-\frac{4}{7} \int {x(1+x^{2} )^{\frac{7}{2} }} \, dx[/tex]
Sekali lg, terdapat integral parsial lagi:)
[tex]\int {x(1+x^{2} )^{\frac{7}{2} }} \, dx[/tex]
[tex]dv=(1+x^{2} )^{\frac{7}{2} }\\\\v=\int {(1+x^{2} )^{\frac{7}{2} }} \, dx \\\\v=\frac{2}{9}(1+x^{2} )^{\frac{9}{2} }[/tex]
[tex]\int {x(1+x^{2} )^{\frac{7}{2} }} \, dx\\\\=x\cdot \frac{2}{9}(1+x^{2} )^{\frac{9}{2} }-\int {\frac{2}{9}(1+x^{2} )^{\frac{9}{2} }} \, dx \\\\=\frac{2x}{9} (1+x^{2} )^{\frac{9}{2} }-\frac{2}{9} \int {(1+x^{2} )^{\frac{9}{2} }} \, dx\\\\=\frac{2x}{9} (1+x^{2} )^{\frac{9}{2} }-\frac{2}{9}\cdot\frac{2}{11} (1+x^{2} )^{\frac{11}{2} }+C[/tex]
[tex]=\frac{2x}{9} (1+x^{2} )^{\frac{9}{2} }-\frac{4}{99}(1+x^{2} )^{\frac{11}{2} }+C[/tex]
Akhirnya dpt 1 hasilnya, substitusi ke integral parsial sblm ini
[tex]\int {x^{2} (1+x^{2} )^{\frac{5}{2}}} \, dx\\\\=\frac{2x^{2} }{7} (1+x^{2} )^{\frac{7}{2} }-\frac{4}{7} \int {x(1+x^{2} )^{\frac{7}{2} }} \, dx\\\\=\frac{2x^{2} }{7} (1+x^{2} )^{\frac{7}{2} }-\frac{4}{7}\cdot \frac{2x}{9} (1+x^{2} )^{\frac{9}{2} }-\frac{4}{7}\cdot \frac{4}{99}(1+x^{2} )^{\frac{11}{2} }+C\\\\=\frac{2x^{2} }{7} (1+x^{2} )^{\frac{7}{2} }-\frac{8x}{63} (1+x^{2} )^{\frac{9}{2} }-\frac{16}{693 }(1+x^{2} )^{\frac{11}{2} }+C[/tex]
Kita substitusi lagi ke integral parsial sblmnya
[tex]\int {x^{3} (1+x^{2} )^{\frac{3}{2}} } \, dx\\\\=\frac{2x^{3} }{5} (1+x^{2} )^{\frac{5}{2}}-\frac{6}{5} \int {x^{2} (1+x^{2} )^{\frac{5}{2}}} \, dx\\\\=\frac{2x^{3} }{5} (1+x^{2} )^{\frac{5}{2}}-\frac{6}{5} \cdot \frac{2x^{2} }{7} (1+x^{2} )^{\frac{7}{2} }-\frac{6}{5}\cdot \frac{8x}{63} (1+x^{2} )^{\frac{9}{2} }-\frac{6}{5}\cdot \frac{16}{693 }(1+x^{2} )^{\frac{11}{2} }+C[/tex]
[tex]=\frac{2x^{3} }{5} (1+x^{2} )^{\frac{5}{2}}-\frac{12x^{2} }{35} (1+x^{2} )^{\frac{7}{2} }-\frac{16x}{105} (1+x^{2} )^{\frac{9}{2} }-\frac{32}{1155} (1+x^{2} )^{\frac{11}{2} }+C[/tex]
Substitusi lagii ke sblmnya, plg awal
[tex]\int {x^{4} \sqrt{1+x^{2} } } \, dx\\\\=\frac{2x^{4} }{3} (1+x^{2} )^{\frac{3}{2}}-\frac{8}{3} \int {x^{3} (1+x^{2} )^{\frac{3}{2}} } \, dx\\\\= \frac{2x^{4} }{3} (1+x^{2} )^{\frac{3}{2}}-\frac{8}{3} (\frac{2x^{3} }{5} (1+x^{2} )^{\frac{5}{2}}-\frac{12x^{2} }{35} (1+x^{2} )^{\frac{7}{2} }-\frac{16x}{105} (1+x^{2} )^{\frac{9}{2} }-\frac{32}{1155} (1+x^{2} )^{\frac{11}{2} })+C[/tex]
[tex]\boxed{= \frac{2x^{4} }{3} (1+x^{2} )^{\frac{3}{2}}- \frac{16x^{3} }{15} (1+x^{2} )^{\frac{5}{2}}-\frac{32x^{2} }{35} (1+x^{2} )^{\frac{7}{2} }-\frac{128x}{315} (1+x^{2} )^{\frac{9}{2} }-\frac{256}{3465} (1+x^{2} )^{\frac{11}{2} }+C}[/tex]
Finallyy dpt hasil nomor 8.
[tex]\boxed{\sf{shf}}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
Integral Parsial
[tex]\boxed{\int {u} \, dv=u\cdot v -\int {v} \, du}[/tex]
7. [tex]\int {x(2x-1)^{-3} } \, dx=\int {u} \, dv[/tex]
u = x
du/dx = 1
du = dx
[tex]dv=(2x-1)^{-3}\\\\v=\int{(2x-1)^{-3}} \, dx \\\\v=\frac{1}{-2} \cdot \frac{1}{2}(2x-1)^{-2} \\\\v=-\frac{1}{4} (2x-1)^{-2}[/tex]
[tex]\int {x(2x-1)^{-3} } \, dx\\\\=u\cdot v-\int {v} \, du\\\\=x\cdot (-\frac{1}{4})(2x-1)^{-2} -\int { (-\frac{1}{4})(2x-1)^{-2} } \, dx \\ \\=-\frac{x}{4}(2x-1)^{-2}+\frac{1}{4} \int {(2x-1)^{-2} } \, dx\\\\=-\frac{x}{4}(2x-1)^{-2}+\frac{1}{4}\cdot \frac{1}{-1}\cdot \frac{1}{2}(2x-1)^{-1} +C\\ \\=-\frac{x}{4}(2x-1)^{-2}-\frac{1}{8}(2x-1)^{-1} +C\\\\\boxed{=-\frac{x}{4(2x-1)^{2}} -\frac{1}{8(2x-1)} +C}[/tex]
8. [tex]\int {x^{4} \sqrt{1+x^{2} } } \, dx=\int {u} \, dv[/tex]
u = x⁴
du/dx = 4x³
du = 4x³ dx
[tex]dv=\sqrt{1+x^{2} } \\\\dv=(1+x^{2} )^{\frac{1}{2} } \\\\v=\int {(1+x^{2} )^{\frac{1}{2} } } \, dx \\\\v=\frac{1}{\frac{3}{2} } (1+x^{2} )^{\frac{3}{2} }\\\\v=\frac{2}{3} (1+x^{2} )^{\frac{3}{2}}[/tex]
[tex]\int {x^{4} \sqrt{1+x^{2} } } \, dx\\\\=x^{4}\cdot \frac{2}{3} (1+x^{2} )^{\frac{3}{2}}-\int {\frac{2}{3} (1+x^{2} )^{\frac{3}{2}} 4x^{3} } \, dx\\\\=\frac{2x^{4} }{3} (1+x^{2} )^{\frac{3}{2}}-\frac{8}{3} \int {x^{3} (1+x^{2} )^{\frac{3}{2}} } \, dx[/tex]
Ada integral parsial lagi di sini, maka dimisalkan jadi u dv lagi
[tex]\int {x^{3} (1+x^{2} )^{\frac{3}{2}} } \, dx[/tex]
u = x³
du/dx = 3x²
du = 3x² dx
[tex]dv= (1+x^{2} )^{\frac{3}{2}}\\\\v=\int { (1+x^{2} )^{\frac{3}{2}}} \, dx \\\\v=\frac{1}{\frac{5}{2} }\cdot \frac{1}{1} (1+x^{2} )^{\frac{5}{2}}\\\\v=\frac{2}{5} (1+x^{2} )^{\frac{5}{2}}[/tex]
[tex]\int {x^{3} (1+x^{2} )^{\frac{3}{2}} } \, dx\\\\= x^{3} \cdot \frac{2}{5} (1+x^{2} )^{\frac{5}{2}} -\int {\frac{2}{5} (1+x^{2} )^{\frac{5}{2}}} \, 3x^{2} dx\\\\=\frac{2x^{3} }{5} (1+x^{2} )^{\frac{5}{2}}-\frac{6}{5} \int {x^{2} (1+x^{2} )^{\frac{5}{2}}} \, dx[/tex]
Ada integral parsial lagi, dimisalkan jadi u dv
[tex]\int {x^{2} (1+x^{2} )^{\frac{5}{2}}} \, dx[/tex]
u = x²
du/dx = 2x
du = 2x dx
[tex]dv=(1+x^{2} )^{\frac{5}{2} } \\\\v=\int {(1+x^{2} )^{\frac{5}{2} } } \, dx \\\\v=\frac{1}{\frac{7}{2} } (1+x^{2} )^{\frac{7}{2} }\\\\v=\frac{2}{7} (1+x^{2} )^{\frac{7}{2} }[/tex]
[tex]\int {x^{2} (1+x^{2} )^{\frac{5}{2}}} \, dx\\\\=x^{2} \cdot \frac{2}{7} (1+x^{2} )^{\frac{7}{2} } -\int {\frac{2}{7} (1+x^{2} )^{\frac{7}{2} }} 2x\, dx \\\\=\frac{2x^{2} }{7} (1+x^{2} )^{\frac{7}{2} }-\frac{4}{7} \int {x(1+x^{2} )^{\frac{7}{2} }} \, dx[/tex]
Sekali lg, terdapat integral parsial lagi:)
[tex]\int {x(1+x^{2} )^{\frac{7}{2} }} \, dx[/tex]
u = x
du/dx = 1
du = dx
[tex]dv=(1+x^{2} )^{\frac{7}{2} }\\\\v=\int {(1+x^{2} )^{\frac{7}{2} }} \, dx \\\\v=\frac{2}{9}(1+x^{2} )^{\frac{9}{2} }[/tex]
[tex]\int {x(1+x^{2} )^{\frac{7}{2} }} \, dx\\\\=x\cdot \frac{2}{9}(1+x^{2} )^{\frac{9}{2} }-\int {\frac{2}{9}(1+x^{2} )^{\frac{9}{2} }} \, dx \\\\=\frac{2x}{9} (1+x^{2} )^{\frac{9}{2} }-\frac{2}{9} \int {(1+x^{2} )^{\frac{9}{2} }} \, dx\\\\=\frac{2x}{9} (1+x^{2} )^{\frac{9}{2} }-\frac{2}{9}\cdot\frac{2}{11} (1+x^{2} )^{\frac{11}{2} }+C[/tex]
[tex]=\frac{2x}{9} (1+x^{2} )^{\frac{9}{2} }-\frac{4}{99}(1+x^{2} )^{\frac{11}{2} }+C[/tex]
Akhirnya dpt 1 hasilnya, substitusi ke integral parsial sblm ini
[tex]\int {x^{2} (1+x^{2} )^{\frac{5}{2}}} \, dx\\\\=\frac{2x^{2} }{7} (1+x^{2} )^{\frac{7}{2} }-\frac{4}{7} \int {x(1+x^{2} )^{\frac{7}{2} }} \, dx\\\\=\frac{2x^{2} }{7} (1+x^{2} )^{\frac{7}{2} }-\frac{4}{7}\cdot \frac{2x}{9} (1+x^{2} )^{\frac{9}{2} }-\frac{4}{7}\cdot \frac{4}{99}(1+x^{2} )^{\frac{11}{2} }+C\\\\=\frac{2x^{2} }{7} (1+x^{2} )^{\frac{7}{2} }-\frac{8x}{63} (1+x^{2} )^{\frac{9}{2} }-\frac{16}{693 }(1+x^{2} )^{\frac{11}{2} }+C[/tex]
Kita substitusi lagi ke integral parsial sblmnya
[tex]\int {x^{3} (1+x^{2} )^{\frac{3}{2}} } \, dx\\\\=\frac{2x^{3} }{5} (1+x^{2} )^{\frac{5}{2}}-\frac{6}{5} \int {x^{2} (1+x^{2} )^{\frac{5}{2}}} \, dx\\\\=\frac{2x^{3} }{5} (1+x^{2} )^{\frac{5}{2}}-\frac{6}{5} \cdot \frac{2x^{2} }{7} (1+x^{2} )^{\frac{7}{2} }-\frac{6}{5}\cdot \frac{8x}{63} (1+x^{2} )^{\frac{9}{2} }-\frac{6}{5}\cdot \frac{16}{693 }(1+x^{2} )^{\frac{11}{2} }+C[/tex]
[tex]=\frac{2x^{3} }{5} (1+x^{2} )^{\frac{5}{2}}-\frac{12x^{2} }{35} (1+x^{2} )^{\frac{7}{2} }-\frac{16x}{105} (1+x^{2} )^{\frac{9}{2} }-\frac{32}{1155} (1+x^{2} )^{\frac{11}{2} }+C[/tex]
Substitusi lagii ke sblmnya, plg awal
[tex]\int {x^{4} \sqrt{1+x^{2} } } \, dx\\\\=\frac{2x^{4} }{3} (1+x^{2} )^{\frac{3}{2}}-\frac{8}{3} \int {x^{3} (1+x^{2} )^{\frac{3}{2}} } \, dx\\\\= \frac{2x^{4} }{3} (1+x^{2} )^{\frac{3}{2}}-\frac{8}{3} (\frac{2x^{3} }{5} (1+x^{2} )^{\frac{5}{2}}-\frac{12x^{2} }{35} (1+x^{2} )^{\frac{7}{2} }-\frac{16x}{105} (1+x^{2} )^{\frac{9}{2} }-\frac{32}{1155} (1+x^{2} )^{\frac{11}{2} })+C[/tex]
[tex]\boxed{= \frac{2x^{4} }{3} (1+x^{2} )^{\frac{3}{2}}- \frac{16x^{3} }{15} (1+x^{2} )^{\frac{5}{2}}-\frac{32x^{2} }{35} (1+x^{2} )^{\frac{7}{2} }-\frac{128x}{315} (1+x^{2} )^{\frac{9}{2} }-\frac{256}{3465} (1+x^{2} )^{\frac{11}{2} }+C}[/tex]
Finallyy dpt hasil nomor 8.
[tex]\boxed{\sf{shf}}[/tex]