Penjelasan dengan langkah-langkah:
9. ∫ 3/(2x - 2) dx
u = 2x - 2
du/dx = 2
dx = 1/2 du
∫ 3/(2x - 2) dx
= 3/u . 1/2 du
= 3/2u du
= 3/2 . 1/u du
= 3/2 . ∫ 1/u du
= 3/2 . ln |2x - 2| + c
10. ∫ 6x/(√3x² + 2) dx
∫ 6x(3x² + 2)^-1/2 dx
u = 3x² + 2
du/dx = 6x
dx = 1/6x du
∫ 6x/(√3x² + 2) dx
= 6x . u^-1/2 . 1/6x du
= u^-1/2 du
= 1/(-1/2 + 1) u^1/2 + c
= 1/(1/2) . (3x² + 2)^1/2 + c
= 2 . √3x² + 2 + c
= 2√(3x² + 2) + c
∫ 1/u du = In |u| + c
∫ ax^n = 1/(n + 1) . ax^(n + 1) + c
9. Misalkan x - 1 = u
[tex]\sf\int {\frac{3}{(2x-2)} } \, dx \\\\=3\int {\frac{1}{(2x-2)} } \, dx\\\\=3\int {\frac{1}{2u} } \, du\\\\=3\cdot \frac{1}{2} \int {\frac{1}{u} } \, du\\\\=\frac{3}{2} \int {\frac{1}{u} } \, du\\\\=\frac{3}{2} In|u|+C\\\\\boxed{\sf=\frac{3}{2} In|x-1|+C}[/tex]
10. Misalkan 3x² + 2 = u
[tex]\sf\int {\frac{6x}{\sqrt{3x^{2} +2} } } \, dx\\\\=6\cdot \int {\frac{x}{\sqrt{3x^{2} +2} } } \, dx\\\\=6\cdot \int {\frac{1}{6\sqrt{u} } } \, dx\\\\=6\cdot \frac{1}{6} \int {\frac{1}{\sqrt{u} } } \, dx\\\\= \int {\frac{1}{\sqrt{u} } } \, dx\\\\= \int {u^{-\frac{1}{2} } } \, dx\\\\=\frac{1}{1+(-\frac{1}{2}) } u^{1+(-\frac{1}{2}) } +C\\\\=\frac{1}{\frac{1}{2} } u^{\frac{1}{2} } +C\\\\=2 u^{\frac{1}{2} } +C\\\\=2 (3x^{2} +2)^{\frac{1}{2} } +C\\\\\boxed{\sf=2\sqrt{3x^{2} +2} +C}[/tex]
[tex]\boxed{\sf{shf}}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Penjelasan dengan langkah-langkah:
9. ∫ 3/(2x - 2) dx
u = 2x - 2
du/dx = 2
dx = 1/2 du
∫ 3/(2x - 2) dx
= 3/u . 1/2 du
= 3/2u du
= 3/2 . 1/u du
= 3/2 . ∫ 1/u du
= 3/2 . ln |2x - 2| + c
10. ∫ 6x/(√3x² + 2) dx
∫ 6x(3x² + 2)^-1/2 dx
u = 3x² + 2
du/dx = 6x
dx = 1/6x du
∫ 6x/(√3x² + 2) dx
= 6x . u^-1/2 . 1/6x du
= u^-1/2 du
= 1/(-1/2 + 1) u^1/2 + c
= 1/(1/2) . (3x² + 2)^1/2 + c
= 2 . √3x² + 2 + c
= 2√(3x² + 2) + c
∫ 1/u du = In |u| + c
∫ ax^n = 1/(n + 1) . ax^(n + 1) + c
9. Misalkan x - 1 = u
[tex]\sf\int {\frac{3}{(2x-2)} } \, dx \\\\=3\int {\frac{1}{(2x-2)} } \, dx\\\\=3\int {\frac{1}{2u} } \, du\\\\=3\cdot \frac{1}{2} \int {\frac{1}{u} } \, du\\\\=\frac{3}{2} \int {\frac{1}{u} } \, du\\\\=\frac{3}{2} In|u|+C\\\\\boxed{\sf=\frac{3}{2} In|x-1|+C}[/tex]
10. Misalkan 3x² + 2 = u
[tex]\sf\int {\frac{6x}{\sqrt{3x^{2} +2} } } \, dx\\\\=6\cdot \int {\frac{x}{\sqrt{3x^{2} +2} } } \, dx\\\\=6\cdot \int {\frac{1}{6\sqrt{u} } } \, dx\\\\=6\cdot \frac{1}{6} \int {\frac{1}{\sqrt{u} } } \, dx\\\\= \int {\frac{1}{\sqrt{u} } } \, dx\\\\= \int {u^{-\frac{1}{2} } } \, dx\\\\=\frac{1}{1+(-\frac{1}{2}) } u^{1+(-\frac{1}{2}) } +C\\\\=\frac{1}{\frac{1}{2} } u^{\frac{1}{2} } +C\\\\=2 u^{\frac{1}{2} } +C\\\\=2 (3x^{2} +2)^{\frac{1}{2} } +C\\\\\boxed{\sf=2\sqrt{3x^{2} +2} +C}[/tex]
[tex]\boxed{\sf{shf}}[/tex]