Penjelasan dengan langkah-langkah:
3. ∫ (x + 2)/(x² + 4x + 1)² dx
batas = (1, 0)
u = x² + 4x + 1
du/dx = 2x + 4
dx = 1/(2x + 4) du
∫ (x + 2)/(x² + 4x + 1)² dx
= ∫ (x + 2)/u² . 1/(2x + 4) du
= ∫ (x + 2) . u^-2 . 1/2(x + 2) du
= 1/2 . ∫ u^-2 du
= 1/2 . 1/(-2 + 1) . u^-1 + c
= 1/2 . -1/(x² + 4x + 1) + c
= (1/2 . (-1/(1)² + 4(1) + 1)) - (1/2 . (-1/1(0)² + 4(0) + 1))
= -1/12 - (-1/2)
= -1/12 + 6/12
= 5/12
4. ∫ x(x + 1)² dx
= x(x² + 2x + 1)
= x³ + 2x² + x
= 1/4 . x⁴ + 1/3 . 2x³ + 1/2 x² + c
= 1/4x⁴ + 2/3x³ + 1/2x² + c
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Penjelasan dengan langkah-langkah:
3. ∫ (x + 2)/(x² + 4x + 1)² dx
batas = (1, 0)
u = x² + 4x + 1
du/dx = 2x + 4
dx = 1/(2x + 4) du
∫ (x + 2)/(x² + 4x + 1)² dx
= ∫ (x + 2)/u² . 1/(2x + 4) du
= ∫ (x + 2) . u^-2 . 1/2(x + 2) du
= 1/2 . ∫ u^-2 du
= 1/2 . 1/(-2 + 1) . u^-1 + c
= 1/2 . -1/(x² + 4x + 1) + c
= (1/2 . (-1/(1)² + 4(1) + 1)) - (1/2 . (-1/1(0)² + 4(0) + 1))
= -1/12 - (-1/2)
= -1/12 + 6/12
= 5/12
4. ∫ x(x + 1)² dx
= x(x² + 2x + 1)
= x³ + 2x² + x
= 1/4 . x⁴ + 1/3 . 2x³ + 1/2 x² + c
= 1/4x⁴ + 2/3x³ + 1/2x² + c