Jawab:
induksi
Penjelasan dengan langkah-langkah:
1/(1.3) + 1/(3.5) + ...+ 1/(2n-1) (2n+1) = n/(2n +1)
a(n) = 1/ { (2n- 1)(2n+1)}
a(k) = 1/ { (2n- 1)(2n+1)}
a(k+1) = 1/ {(2(k+1) -1)(2 (k+1) + 1)
a(k+1) = 1/{(2k+1)(2k+ 3)
.
p(n) = n/ (2n + 1)
p(k) = k/(2k + 1)
p(k+1) = (k+ 1) / (2(k+1) +1)
p(k+1) = (k+1)/(2k+ 3).
....
p(k+1) = p(k) + a(k+1)
(k+1)/ (2k+3) = k/(2k+1) + 1/ (2k +1)(2k+3)
(k+1)/ (2k+3) = [ k (2k+3) + 1 ]/ (2k + 1)(2k+3)
(k+1)/ (2k+3) = [2k² + 3k + 1 ] / (2k + 1)(2k+ 3)
(k+1)/ (2k + 3) = (2k +1)(k +1)/(2k+1)(2k+3)
(k+1) / (2k+ 3) = (k+1) / (2k + 3)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Jawab:
induksi
Penjelasan dengan langkah-langkah:
1/(1.3) + 1/(3.5) + ...+ 1/(2n-1) (2n+1) = n/(2n +1)
a(n) = 1/ { (2n- 1)(2n+1)}
a(k) = 1/ { (2n- 1)(2n+1)}
a(k+1) = 1/ {(2(k+1) -1)(2 (k+1) + 1)
a(k+1) = 1/{(2k+1)(2k+ 3)
.
p(n) = n/ (2n + 1)
p(k) = k/(2k + 1)
p(k+1) = (k+ 1) / (2(k+1) +1)
p(k+1) = (k+1)/(2k+ 3).
....
p(k+1) = p(k) + a(k+1)
(k+1)/ (2k+3) = k/(2k+1) + 1/ (2k +1)(2k+3)
(k+1)/ (2k+3) = [ k (2k+3) + 1 ]/ (2k + 1)(2k+3)
(k+1)/ (2k+3) = [2k² + 3k + 1 ] / (2k + 1)(2k+ 3)
(k+1)/ (2k + 3) = (2k +1)(k +1)/(2k+1)(2k+3)
(k+1) / (2k+ 3) = (k+1) / (2k + 3)
....