" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
INTEGRAL PARSIAL∫ u dv = u v - ∫ v du
∫ (ax + b)^n dx = 1/(a(n + 1)) . (ax + b)^(n + 1) + C
∫ 8x (1 - 2x)^3 dx
Misal :
u = 8x
du = 8 dx
dv = (1 - 2x)^3 dx
v = 1/(-2(4)) . (1 - 2x)^4 = -1/8 (1 - 2x)^4
∫ 8x (1 - 2x)^3 dx = u . v - ∫ v du
= 8x . -1/8 (1 - 2x)^4 - ∫ -1/8 (1 - 2x)^4 . 8 dx
= -x (1 - 2x)^4 + ∫ (1 - 2x)^4 dx
= -x (1 - 2x)^4 + 1/(-2(5)) . (1 - 2x)^5 + C
= -x (1 - 2x)^4 - 1/10 (1 - 2x)^5 + C
bisa disederhanakan lagi menjadi
= -x (1 - 2x)^4 - 1/10 (1 - 2x)^5 + C
= (1 - 2x)^4 [-x - 1/10 (1 - 2x)] + C
= (1 - 2x)^4 [(-10x - 1(1 - 2x)]/10 + C
= (1 - 2x)^4 (-10x - 1 + 2x)/10 + C
= (1 - 2x)^4 (-8x - 1)/10 + C
= -1/10 . (8x + 1) (1 - 2x)^4 + C