el valor numerico de las integrales es:
∫(x²+1)dx = 686.66
∫(x+1)dx = 17.5
∫(3x²+2)dx = -9
∫(2x +π)dx = 2.59
∫(2x²-8)dx = 13.33
1-. Li:-10 ; Ls=10
∫(x²+1)dx
∫x²dx + ∫dx
x³/3 + x evaluando limites:
(-10³/3 -10)-(10³/3+10) =-343.33-(343.33) =686.66
2.-Li=0 ; Ls=5
∫(x+1)dx
∫xdx + ∫dx
x²/2 + x
(0²/2 + 0)-(5²/2 + 5) = 0 - 17.5
3.-Li=-2 ; Ls=1
∫(3x²+2)dx
∫3x²dx + 2∫dx
3x³/3 + 2x
((-2)³ + 2(-2))-(1³ + 2(1) = -12 - (-3) = -9
4.-Li=-2; Ls=1
∫(2x +π)dx
∫2xdx + π∫dx
x²+πx
(-2² + π(-2)) -(1² +π1) = -2.28 - 4.14 =2.59
5.- Li=-1 ; Ls=3
∫(2x²-8)dx
∫2x²dx -8∫dx
2x³/3dx -8x
(2(-1)³/3 - 8(-1)) - (2(3)³/3 - 8*3) = 7.33 + 6 =13.33
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
el valor numerico de las integrales es:
∫(x²+1)dx = 686.66
∫(x+1)dx = 17.5
∫(3x²+2)dx = -9
∫(2x +π)dx = 2.59
∫(2x²-8)dx = 13.33
Explicación paso a paso:
1-. Li:-10 ; Ls=10
∫(x²+1)dx
∫x²dx + ∫dx
x³/3 + x evaluando limites:
(-10³/3 -10)-(10³/3+10) =-343.33-(343.33) =686.66
∫(x²+1)dx = 686.66
2.-Li=0 ; Ls=5
∫(x+1)dx
∫xdx + ∫dx
x²/2 + x
(0²/2 + 0)-(5²/2 + 5) = 0 - 17.5
∫(x+1)dx = 17.5
3.-Li=-2 ; Ls=1
∫(3x²+2)dx
∫3x²dx + 2∫dx
3x³/3 + 2x
((-2)³ + 2(-2))-(1³ + 2(1) = -12 - (-3) = -9
∫(3x²+2)dx = -9
4.-Li=-2; Ls=1
∫(2x +π)dx
∫2xdx + π∫dx
x²+πx
(-2² + π(-2)) -(1² +π1) = -2.28 - 4.14 =2.59
∫(2x +π)dx = 2.59
5.- Li=-1 ; Ls=3
∫(2x²-8)dx
∫2x²dx -8∫dx
2x³/3dx -8x
(2(-1)³/3 - 8(-1)) - (2(3)³/3 - 8*3) = 7.33 + 6 =13.33
∫(2x²-8)dx = 13.33