lo que significa "el factorial de cualquier número es: el número por el factorial de (1 menos que el número", por tanto 10! = 10 × 9!, o incluso 125! = 125 × 124!
Qué pasa con "0!"
El factorial de cero es interesante... se suele estar de acuerdo en que 0! = 1.
Parece raro que no multiplicar ningún número dé 1, pero ayuda a simplificar muchas cuestiones.
¿Dónde se usa el factorial?
Los factoriales se usan en muchas áreas de las matemáticas, pero sobre todo en combinaciones y permutaciones
Respuesta:
Así que la regla es:
n! = n × (n-1)!
lo que significa "el factorial de cualquier número es: el número por el factorial de (1 menos que el número", por tanto 10! = 10 × 9!, o incluso 125! = 125 × 124!
Qué pasa con "0!"
El factorial de cero es interesante... se suele estar de acuerdo en que 0! = 1.
Parece raro que no multiplicar ningún número dé 1, pero ayuda a simplificar muchas cuestiones.
¿Dónde se usa el factorial?
Los factoriales se usan en muchas áreas de las matemáticas, pero sobre todo en combinaciones y permutaciones
Una pequeña lista
nn!011122364245120672075,040840,3209362,880103,628,8001139,916,80012479,001,600136,227,020,8001487,178,291,200151,307,674,368,0001620,922,789,888,00017355,687,428,096,000186,402,373,705,728,00019121,645,100,408,832,000202,432,902,008,176,640,0002151,090,942,171,709,400,000221,124,000,727,777,610,000,0002325,852,016,738,885,000,000,00024620,448,401,733,239,000,000,0002515,511,210,043,331,000,000,000,000
Explicación paso a paso:
te di el tip de como hacerlo :)