" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
u= θ⁻¹
du = -θ⁻² dθ
∫ θ⁻² cos(θ⁻¹) dθ = -∫ cos(u) du = -sen (θ⁻¹) + c
₂ ₂
∫ x/(√(1+2x²)) dx = 1/4∫ 4x/(√(1+2x²)) dx
⁰ ⁰
u=1+2x²
u₁=1+2(0)² =1
u₂=1+2(2)²= 9
du= 4x dx
₉ ₉
1/4 ∫ du /√u = 1/2 (√u l ) = 1/2 (3 - 1) = 1
¹ ¹
∫ (4x³+3)/(x⁴ + 3x) dx
u=x⁴+3x
du= 4x³ + 3 dx
∫ (4x³+3)/(x⁴ + 3x) dx = ∫ 1/u du = Ln lx⁴ + 3xl + c