a)|x^3-4x|>x^3-4x
b)x^2<=|6x-x^3|
a) |x^3-4x|>x^3-4x
|a|>a ⇔a<0
x³-4x<0
x(x²-4)<0
x=0 ∨ x²=4
x=2 v x=-2
odp: x∈(-∞,-2) u (0,2)
b) x^2 ≤ |6x-x^3|
1) Dziedzina: 6x-x³ ≥ 0
x(6-x²) ≥ 0
x=0 v x=√6 v x=-√6
D: x∈(-∞,-√6> u <0,√6>
6x-x³ ≥ x²
x³+x² - 6x ≤ 0
x(x² + x - 6) ≤ 0
x=0 Δ=25
x=-3 v x=2
x∈(-∞,-3> u <0,2>
2) D: 6x-x³ <0
x(6-x²) <0
x=0 v x=√6 v x=-√6 ⇒ x∈(-√6,0)u(√6,+∞)
x(x² + x - 6) ≥ 0
x=0 x=3 x=-2
x∈<-2,0) u <3,+∞)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
a) |x^3-4x|>x^3-4x
|a|>a ⇔a<0
x³-4x<0
x(x²-4)<0
x=0 ∨ x²=4
x=2 v x=-2
odp: x∈(-∞,-2) u (0,2)
b) x^2 ≤ |6x-x^3|
1) Dziedzina: 6x-x³ ≥ 0
x(6-x²) ≥ 0
x=0 v x=√6 v x=-√6
D: x∈(-∞,-√6> u <0,√6>
6x-x³ ≥ x²
x³+x² - 6x ≤ 0
x(x² + x - 6) ≤ 0
x=0 Δ=25
x=-3 v x=2
x∈(-∞,-3> u <0,2>
2) D: 6x-x³ <0
x(6-x²) <0
x=0 v x=√6 v x=-√6 ⇒ x∈(-√6,0)u(√6,+∞)
6x-x³ ≥ x²
x(x² + x - 6) ≥ 0
x=0 x=3 x=-2
x∈<-2,0) u <3,+∞)