Uzasadnij że dla dowolnej liczby rzeczywistej a jeżeli a>0 to a+1/a>1
a > 0
(a+1)/a = a/a + 1/a = 1 + 1/a > 1
Lub
a + 1/a > 1 I*a
a²-a+1 > 0 , bo 1>0 i Δ = (-1)²-4·1·1 = 1-4 = -3 < 0
a²+1 > a I:a (a > 0)
a²/a + 1/a > a/a
a + 1/a > 1
c.n.u
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
a > 0
(a+1)/a = a/a + 1/a = 1 + 1/a > 1
Lub
a + 1/a > 1 I*a
a²-a+1 > 0 , bo 1>0 i Δ = (-1)²-4·1·1 = 1-4 = -3 < 0
a²+1 > a I:a (a > 0)
a²/a + 1/a > a/a
a + 1/a > 1
c.n.u