Agar sistem persamaan linear ax + by - 3z = -3 -2x - by + cz = -1 ax + 3y - cz = -3 mempunyai penyelesaian x = 1, y=-1, dan z=2, maka nilai a+b+c adalah .... a.-1 b.1 c.2 d.3 e.4
AlbertHM
Masukin aja dulu x, y, z a - b - 6c = -3 ...(i) -2 + b + 2c = -1 ...(ii) a - 3 -2c = -3 ..(iii)
Eleminasi pers i dan iii a - b - 6c = -3 a - 3 -2c = -3 _ -b+3-6c+2c = 0 b + 4c = 3 ... (iv)
Eleminasi pers ii dan iv -2 + b + 2c = -1 b + 4c = 3 _ -2-2c=-4 -2c = -2 c = 1 Subtitusi ke iv b + 4 . 1 = 3 b = 3-4 = -1
Subtitusi ke iii a - 3 - 2.1 = -3 a -5 = -3 a = 2
a+b+c = 2 + (-1) + 1 = 2
:)
0 votes Thanks 1
AuliyaPinky
Kok a-b-6c ?? Bknnya a-b-6 ?? Kan di soal -3z . Z:2 . Jadi -6 ?? Bkn -6C
nobert
A - b - 6=-3 -> a-b= 3 -2 + b + 2c = -1 -> b + 2c = 1 ->b = 1 - 2c a - 3 - 2c = -3 -> a - 2c = 0 -> a = 2c
a - b = 3 2c - (1 - 2c) = 3 -> 2c-1+2c = 3 -> c = 1 a = 2c -> a = 2 b = 1 - 2c -> b = -1 a + b + c = 2 + (-1) + 1 = 2
a - b - 6c = -3 ...(i)
-2 + b + 2c = -1 ...(ii)
a - 3 -2c = -3 ..(iii)
Eleminasi pers i dan iii
a - b - 6c = -3
a - 3 -2c = -3 _
-b+3-6c+2c = 0
b + 4c = 3 ... (iv)
Eleminasi pers ii dan iv
-2 + b + 2c = -1
b + 4c = 3 _
-2-2c=-4
-2c = -2
c = 1
Subtitusi ke iv
b + 4 . 1 = 3
b = 3-4
= -1
Subtitusi ke iii
a - 3 - 2.1 = -3
a -5 = -3
a = 2
a+b+c = 2 + (-1) + 1
= 2
:)
-2 + b + 2c = -1 -> b + 2c = 1 ->b = 1 - 2c
a - 3 - 2c = -3 -> a - 2c = 0 -> a = 2c
a - b = 3
2c - (1 - 2c) = 3 -> 2c-1+2c = 3 -> c = 1
a = 2c -> a = 2
b = 1 - 2c -> b = -1
a + b + c = 2 + (-1) + 1 = 2