a) -x²+5x+3=0
b) 4x²12x+1=0
c) -4x²+9x-9=0
d) 3x²-18x=0
e) 4x²+36x+81=0
prosze.
a) -x² +5x +3 = 0
Δ= b²-4ac = 5²-4·(-1)·3= 25+12=37, √Δ= √37
x₁ = (-5-√37) / (-2) = (5+√37) / 2
x₂ = (-5+√37) /(-2) = (5-√37) / 2
b) błąd w zadaniu
c) -4x² +9x -9 =0
Δ = 81-16·9 = 81-144 = -63
Δ < 0, czyli równanie nie ma rozwiązania
d) 3x² -18x =0
3x( x-6) = 0
x₁=0 ∨ x-6=0
x₂=6
e) 4x²+36x+81 =0 Jest to wzór skróconego mnożenia na kwadrat sumy.
(2x + 9)² = 0
2x+9 =0 ⇒ 2x= -9 ⇒ x= -9/2 = -4½
a)
-x² + 5x+3 = 0 I*(-1)
x² -5x-3 = 0
Δ = b^2 - 4ac = 25+12 = 37
√Δ = √37
x1 = (-b-√Δ)/2a = (5-√37)/2
x2 = (-b+√Δ)/2a = (5+√37)/2
b)
4x²-12x+1 = 0
Δ = 144-16 = 128
√Δ = √128 = 8√2
x1 = (12-8√2)/8 = 1,5-√2
x2 = (12+8√2)/8 = 1,5+√2
c)
-4x²+9x-9 = 0 I*(-1)
4x² -9x+9 = 0
Δ = 81-144 = -63
Δ < 0, brak rozwiązania
d)
3x²-18x = 0
3x(x-6) = 0
x = 0
lub
x-6 = 0 => x = 6
Odp. x = 0 v x = 6
e)
4x²+36x+81 = 0
(2x+9)² = 0
2x+9 = 0
2x = -9 /:2
x = -4,5
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
a) -x² +5x +3 = 0
Δ= b²-4ac = 5²-4·(-1)·3= 25+12=37, √Δ= √37
x₁ = (-5-√37) / (-2) = (5+√37) / 2
x₂ = (-5+√37) /(-2) = (5-√37) / 2
b) błąd w zadaniu
c) -4x² +9x -9 =0
Δ = 81-16·9 = 81-144 = -63
Δ < 0, czyli równanie nie ma rozwiązania
d) 3x² -18x =0
3x( x-6) = 0
x₁=0 ∨ x-6=0
x₂=6
e) 4x²+36x+81 =0 Jest to wzór skróconego mnożenia na kwadrat sumy.
(2x + 9)² = 0
2x+9 =0 ⇒ 2x= -9 ⇒ x= -9/2 = -4½
a)
-x² + 5x+3 = 0 I*(-1)
x² -5x-3 = 0
Δ = b^2 - 4ac = 25+12 = 37
√Δ = √37
x1 = (-b-√Δ)/2a = (5-√37)/2
x2 = (-b+√Δ)/2a = (5+√37)/2
b)
4x²-12x+1 = 0
Δ = 144-16 = 128
√Δ = √128 = 8√2
x1 = (12-8√2)/8 = 1,5-√2
x2 = (12+8√2)/8 = 1,5+√2
c)
-4x²+9x-9 = 0 I*(-1)
4x² -9x+9 = 0
Δ = 81-144 = -63
Δ < 0, brak rozwiązania
d)
3x²-18x = 0
3x(x-6) = 0
x = 0
lub
x-6 = 0 => x = 6
Odp. x = 0 v x = 6
e)
4x²+36x+81 = 0
(2x+9)² = 0
2x+9 = 0
2x = -9 /:2
x = -4,5