rozdział: funkcje wykladniczne i logartymy
rowiąż równanie
a) 2^x-3 + 2^x = 18
b) 9^x - 25 * 3^x - 54 = 0
c) 81 * (1/3)^x = 9^x/3 (jedna trzecie do x, 9do x przez 3)
d) (3/2)^x * 1,5 = ( 8/27 )^x
e)4^x * 8^x+1 = 1/2
f) 27^x+3 = pierwiastek z 3 * 81^x
g) (4/9)^x * (3/2)^x-1 = 27/8
h) 2,5^x+2 = 0,4 * 0,16^x
proooosze bardzo o rozwiązanie (i jeszcze ktos mogl by jeszcze pare slow wytlumaczenia, z gory dzieki:****)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
a)
2^(x-3) + 2^x = 18
2^x * 2^(-3) + 2 ^x = 18
2^x *( 1/8 + 1) = 18
2^x = 18 : (9/8)
2^x = 18*(8/9) = 16
x = 4
=====
b)
9^x -25 * 3^x - 54 = 0
(3^2)^x - 25* 3^x - 54 = 0
(3^x)^2 -25* 3^x - 54 = 0
Niech y = 3^x
y^2 - 25 y - 54 = 0
delta = (-25)^2 - 4*1*(-54) = 625 + 216 = 841
p (delty ) = 29
y = [ 25 - 29]/2 = -4/2 = -2 < 0 - odpada
y = [25 + 29]/2 = 54/2 = 27
czyli
3^x = 27
x = 3
=====
c)
81*(1/3)^x =( 9^x) / 3 / *3
243 * 1/(3^x) =( 3^2)^x
243/ (3^x) = 3^(2x)
243 = 3^(2x) * (3^x)
3^(3x) - 243
3^(3x) = 3^5
3x = 5
x = 5/3
=======
d)
(3/2)^x *1.5 = (8/27)^x
(2/3)^(-x) *1,5 = (2/3)^(3x) / : (2/3)^(-x)
1,5 = (2/3)^[3x -(-x)]
3/2 = (2/3)^(4x)
(2/3)^(-1) = (2/3)^(4x)
4x = - 1
x = - 1/4
===========
e)
4^x * 8^(x+1) = 1/2
(2^2)^x * 8* 8^x = 1/2 / : 8
2^(2x)* (2^3)^x = 1/16
2^(2x)* 2^(3x) = 1/16
2^(5x) = 2^(-4)
5x = - 4
x = -4/5
========
f)
27^(x+3) = p(3)* 81^x
27^x * 27^3 = p(3)* (3^4)^x
(3^3)^x * (3^3)^3 = 3^(1/2) * 3^(4x)
3^(3x) * 3^9 = 3^(4x + 0,5) / : 3^(3x)
3^9 = 3^(x +0,5)
9 = x + 0,5
x = 8,5
========
g)
(4/9)^x *(3/2)^(x-1) = 27/8
[(2/3)^2]^x * (3/2)^x * (3/2)^(-1) = (3/2)^3
(2/3)^(2x) *(2/3) *(3/2)^x = (3/2)^3 / : (3/2)^x
(2/3)^(2x+1) = (3/2)^(3 -x)
(2/3)^(2x +1) = (2/3)^(x -3)
2x + 1 = x -3
x = -3 -1 = -4
============
h)
2,5^(x+2) = 0,4 *0,16^x
(5/2)^(x+2) = (2/5)*(16/100)^x
(5/2)^(x+2) = (2/5)*(4/25)^x
(5/2)^(x+2) = (2/5)*[(2/5)^2]^x
(5/2)^(x+2) = (2/5)*(2/5)^(2x)
(2/5)^(-x -2) = (2/5)^(2x + 1)
-x -2 = 2x + 1
-3 = 3x
x = - 1
======