dla pewnego kąta ostrego cos alfa = 4/7, oblicz wartosci pozostalych funkcji trygonometrycznych???
cosa = 4/7
sin^2a + cos^2a = 1
sin^2a + (4/7)^2 = 1
sin^2a = 1 - 16/49
sin^2a = 49 - 16/49
sin^2a = 33/49
sina = √33/ 7 -------- odpowiedź
tga = sina / cosa = √33/ 7 : 4/7 = √33/7 * 7/4 = √33/4
cgta = 1 / tga = 1 : √33/4 = 1 * 4/√33 = 4/√33 = 4√33/33
cos alfa = 4/7
cos alfa = x/r, zatem x = 4 i r = 7
x^2 + y^2 = r^2
y^2 = r^2 - x^2 = 7^2 - 4^2 = 49 - 16 = 33
y = p(33)
zatem
sin alfa = y/r = p(33)/7
tg alfa = y/x = p(33)/4
ctg alfa = x/y = 4 / p(33) = ( 4/33) *p(33)
=====================================
p(33) - pierwiastek kwadratowy z 33
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
cosa = 4/7
sin^2a + cos^2a = 1
sin^2a + (4/7)^2 = 1
sin^2a = 1 - 16/49
sin^2a = 49 - 16/49
sin^2a = 33/49
sina = √33/ 7 -------- odpowiedź
tga = sina / cosa = √33/ 7 : 4/7 = √33/7 * 7/4 = √33/4
cgta = 1 / tga = 1 : √33/4 = 1 * 4/√33 = 4/√33 = 4√33/33
cos alfa = 4/7
cos alfa = x/r, zatem x = 4 i r = 7
x^2 + y^2 = r^2
y^2 = r^2 - x^2 = 7^2 - 4^2 = 49 - 16 = 33
y = p(33)
zatem
sin alfa = y/r = p(33)/7
tg alfa = y/x = p(33)/4
ctg alfa = x/y = 4 / p(33) = ( 4/33) *p(33)
=====================================
p(33) - pierwiastek kwadratowy z 33