Log 1/3 27
Log4 16
Log 2/5 4/25
Log5 1/625
Log 1/3 27
Log 5 25 do potęgi 4
Oblicz jak to : Log 1/5 625 (1/5) do x = 5 do 4 –x =4 x=4
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
def logarytmu
loga b = c --> a^c=b
Log 1/3 27=-3
Log4 16=2
Log 2/5 4/25=2
Log5 1/625 = -4
Log 1/3 27=-3
Log 5 25 do potęgi 4 = log5 5^8 = 8
log[1/5] 625=x
[1/5]^x=625
[1/5]^x=[1/5]^(-4)
x=-4
[1/5]^x=625
[5^-1]^x=5^4
5^(-x)=5^4
-x=4
x=-4
log 1/3 [ 27 ] = - 3, bo ( 1/3)^( -3) = 3^3 = 27
-----------------------------------------------------------
log 4 [ 16 ] = 2 , bo 4^2 = 16
--------------------------------------
log 2/5 [ 4/25] = 2 , bo ( 2/5)^2 = 4/25
-----------------------------------------------
log 5 [ 1/625 ] = - 4, bo 5^(-4) = 1 / [ 5^4] = 1/625
-----------------------------------------------------------------
log 5 [ 25 ^4 ] = 4* log 5 [25] = 4* 2 = 8, bo 5^2 = 25
--------------------------------------------------------------------