Oblicz x korzystając z definicji logarytmu: a)log4X=3/2
b)log 1/8x2=1/3
c)log9IxI=3/2
d)log1/4x=-2
log₄x=3/2
4 do potegi 3/2=x
x=√64=8
..............
log⅛x²=1/3
(1/8) do potegi 1/3=x²
x²=∛⅛=½
x=√½
x=√2/2 lub x=-√2/2
.............................
log₉ I xI =3/2
9 do potegi 3/2= IxI
IxI=√729
x=27
............
log¼x=-2
(¼)⁻²=x
x=16
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
log₄x=3/2
4 do potegi 3/2=x
x=√64=8
..............
log⅛x²=1/3
(1/8) do potegi 1/3=x²
x²=∛⅛=½
x=√½
x=√2/2 lub x=-√2/2
.............................
log₉ I xI =3/2
9 do potegi 3/2= IxI
IxI=√729
x=27
............
log¼x=-2
(¼)⁻²=x
x=16