Zapisz wzór funkcji kwadratowej w postaci kanonicznej
a)y= x^2-x-9
b)y=x^2-x+1/4
c)y=x^2-5x+5
d)y=x^2-5x
e)y=x^2+7x
f)y=3x^2-3x-1/4
g)y=-2x^2+4x+5
h)y=4x^2-12x+5
i)y=2x^2+x+1
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Aby otrzymać postać kanoniczną, tj. y=a(x-p)² +q:
⇒ liczymy deltę
⇒ otrzymujemy p= -b/2a; q= -Δ/4a
a) y= x²-x-9
a=1, bo (1)*x²
b=-1, bo (-1)x
c=-9
Δ=1-4*1*(-9)=1+36=37
p= 1/2
q= -37/4= -9 i 1/4
y=(x-1/2)² - 9 i 1/4
b) y=x²-x+1/4
Δ= 1-4*1*1/4=0
p=1/2
q=0
y=(x-1/2)²
c) y=x²-5x+5
Δ=25-4*1*5=25-20=5
p=5/2
q= -5/4
y=(x-5/2)² - 5/4
d) y=x²-5x
Δ=25-4*1*0=25
p=5/2
q=-25/4
y=(x-5/2)²-25/4
e) y=x²+7x
Δ=49-4*1*0=49
p=-7/2
q=-49/4
y=(x+7/2)²-49/4
f)y=3x²-3x-1/4
Δ=9-4*3*(-1/4)=12
p=3/6=1/2
q=-12/12=-1
y=3(x-1/2)²-1
g)y=-2x²+4x+5
Δ=16-4*(-2)*5=56
p=-4/-4=1
q=-56/-8=7
y=-2(x-1)+7
h)y=4x²-12x+5
Δ=(-12)² - 4*4*5=64
p=12/8
q=-64/16
y=4(x-12/8)²-64/16
i)y=2x²+x+1
Δ=1-4*2*1=1-8=-7
p=-1/4
q=7/8
y=2(x+1/4)²+7/8
Δ = b²-4ac
p = -b/2a
q = -Δ/4a
y = a(x-p)²+q
a)y= x^2-x-9
a=1 b=-1 c=-9
Δ = (-1)²-4*1*(-9) = 1+36 = 37
p = -½
q = -37/4 = -9¼
y = 1(x+½)²-9¼
b)y=x^2-x+¼
a=1 b=-1 c=¼
Δ = (-1)²-4*1*¼ = 1-1 = 0
p = ½
q = 0/4 = 0
y = 1(x-½)²
c)y=x^2-5x+5
a=1 b=-5 c=5
Δ = (-5)²-4*1*5 = 25-20 = 5
p = 5/2 = 2½
q = -5/4 = -1¼
y = 1(x-2½)-1¼
d)y=x^2-5x
a=1 b=-5 c=0
Δ = (-5)²-4*1*0 = 25
p = 5/2 = 2½
q = -25/4 = -6¼
y = 1(x-2½)-6¼
e)y=x^2+7x
a=1 b=7 c=0
Δ = 7²-4*1*0
Δ = 49
p = -7/2 = -3½
q = -49/4 = -12¼
y =1(x+3½)-12¼
f)y=3x^2-3x-1/4
a=3 b=-3 c=-¼
Δ=(-3)²-4*3*(-¼) = 9+3 = 12
p = 3/6 = ½
q = -12/12 = -1
y = 3(x-½)-1
g)y=-2x^2+4x+5
a=-2 b=4 c=5
Δ = 4²-4*(-2)*5 = 16+40 = 56
p = -4/-4 = 1
q = -56/-8 = 7
y = -2(x-1)+7
h)y=4x^2-12x+5
a=4 b=-12 c=5
Δ = (-12)²-4*4*5 = 144-80 = 64
p = 12/8 = 1½
q = -64/16 = -4
y = 4(x-1½)-4
i)y=2x^2+x+1
a=2 b=1 c=1
Δ = 1²-4*2*1
Δ = 1-8 = -7
p = -¼
q = 7/8
y = 2(x+¼)+7/8