Wykaż, że istnieje taki kąt ostry alfa, że cos²α= 5/4 + sin²α
Będe wdzieczna za rozwiazanie! ;)
1.
sin²α+cos²α=1
(1/3)²+cos²α=1
cos²α=1- 1/9
cos²α=8/9
cosα = 2√2 / 3
tgα=sinα/cosα
tgα = 1/3 / (2√2 / 3) = 1/3 * 3/2√2 = 1 / 2√2 = √2 / 4 ≠ √2/2
2.
log(4/3) sinα = -1/2
(4/3)^(-1/2) = sinα
sinα=(3/4)^(1/2)
sinα=√3/2
α =60°
3.
(sinα-cosα)²=sin²α+cos²α-2sinα cosα = 1-2sinα cosα
sinα + cosα = √5 / 2 /()²
sin²α+cos²α +2sinα cosα = 5/4
2sinα cosα = 5/4-1
2sinα cosα = 1/4
-2sinα cosα = -1/4
1-2sinα cosα = 1-1/4 = 3/4
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
1.
sin²α+cos²α=1
(1/3)²+cos²α=1
cos²α=1- 1/9
cos²α=8/9
cosα = 2√2 / 3
tgα=sinα/cosα
tgα = 1/3 / (2√2 / 3) = 1/3 * 3/2√2 = 1 / 2√2 = √2 / 4 ≠ √2/2
2.
log(4/3) sinα = -1/2
(4/3)^(-1/2) = sinα
sinα=(3/4)^(1/2)
sinα=√3/2
α =60°
3.
(sinα-cosα)²=sin²α+cos²α-2sinα cosα = 1-2sinα cosα
sinα + cosα = √5 / 2 /()²
sin²α+cos²α +2sinα cosα = 5/4
2sinα cosα = 5/4-1
2sinα cosα = 1/4
-2sinα cosα = -1/4
1-2sinα cosα = 1-1/4 = 3/4