Respuesta:
S = 3710
Explicación paso a paso:
34.
S = 1(1 + 4) + 2(2 + 4) + 3(3 + 4) +......+ 20(20 + 4)
S = 1² + 1×4 + 2² + 2×4 + 3² + 3×4 +......+ 20² + 4×20
S = 1² + 2² + 3² +......+ 20² + 1×4 + 2×4 + 3×4 +.......+ 4×20
S = 1² + 2² + 3² +......+ 20² + 4(1 + 2 + 3 +.......+ 20)
Utilizar:
1² + 2² + 3² +......+ n² = n(n + 1)(2n + 1) / 6
1 + 2 + 3 +.......+ n = n(n + 1) / 2
S = 20(20 + 1)(2(20) + 1) / 6 + 4(20(20 + 1) / 2)
S = 20(21)(40 + 1) / 6 + 2(20(21))
S = 10(7)(41) + 2(420)
S = 10(287) + 840
S = 2870 + 840
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Respuesta:
S = 3710
Explicación paso a paso:
34.
S = 1(1 + 4) + 2(2 + 4) + 3(3 + 4) +......+ 20(20 + 4)
S = 1² + 1×4 + 2² + 2×4 + 3² + 3×4 +......+ 20² + 4×20
S = 1² + 2² + 3² +......+ 20² + 1×4 + 2×4 + 3×4 +.......+ 4×20
S = 1² + 2² + 3² +......+ 20² + 4(1 + 2 + 3 +.......+ 20)
Utilizar:
1² + 2² + 3² +......+ n² = n(n + 1)(2n + 1) / 6
1 + 2 + 3 +.......+ n = n(n + 1) / 2
S = 20(20 + 1)(2(20) + 1) / 6 + 4(20(20 + 1) / 2)
S = 20(21)(40 + 1) / 6 + 2(20(21))
S = 10(7)(41) + 2(420)
S = 10(287) + 840
S = 2870 + 840
S = 3710