Oblicz podaną sumę wyrazów ciągu geometrycznego
-1 - 3/2 - 9/4 - ... - 243/32
a1 = -1
q = -3/2 : -1 = 3/2
-1*3/2^(n-1) = -243/32
-3/2^(n-1) = -243/32
-3/2^(n-1) = -3/2^5
n -1=5
n = 6
S= a1+aq+aq^2....+aq^(n-1) = a1 * (1-q^n )/ (1-q)
S₆ = -1 * (1-(3/2)^6)/1-3/2
= -1 * (1- 729/64 ) / -1/2
= -1 * (64/64 - 729/64) / -1/2
= -1* (-665/64) / -1/2
= 665/64 * (-2)=
= -1330/64 =
= -20 50/64 =
= -20 25/ 32 <------------- odp
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
a1 = -1
q = -3/2 : -1 = 3/2
-1*3/2^(n-1) = -243/32
-3/2^(n-1) = -243/32
-3/2^(n-1) = -3/2^5
n -1=5
n = 6
S= a1+aq+aq^2....+aq^(n-1) = a1 * (1-q^n )/ (1-q)
S₆ = -1 * (1-(3/2)^6)/1-3/2
= -1 * (1- 729/64 ) / -1/2
= -1 * (64/64 - 729/64) / -1/2
= -1* (-665/64) / -1/2
= 665/64 * (-2)=
= -1330/64 =
= -20 50/64 =
= -20 25/ 32 <------------- odp