Stosunek obwodów dwóch kwadratów jest równy 1/3. Oblicz długość boku każdego z nich, jeżwli wiadomo, że suma pól kwadratów wynosi 160 cm2
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
l1 = x
l2 = 3x
a1 = 1/4x
a2 = 3/4x
1/16x^2 + 9/16x^2 = 160
10/16x^2 = 160
x^2 = 256
x = 16
a1 = 4
a2 = 12
\frac{4a_{1}}{4a_{2}}=\frac{1}{3}\\
12a_{1}=a_{2}\\
\\
P_{1}+P_{2}=160cm^2\\
\
\left \{ {{a_{1}\ ^2+9a_{2}\ ^2=160} \atop {a_{2}=3a_{1}}\\
\left \{ {{a_{1}\ ^2+9a_1\ ^2=160} \atop {a_{2}=3a_{1}}\\
\left \{ {{a_{1}\ ^2=16} \atop {a_{2}=3a_{1}}\\
\left \{ {{a_{1}=4} \atop {a_{2}=12}}