" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
f(x) = 2x + 3
g(x) = ( x + 2 ) / ( x - 5 )
(a) ( g o f )(x) = g [ f(x) ]
= g ( 2x + 3 )
= ( 2x + 3 + 2 ) / ( 2x + 3 - 5 )
= ( 2x + 5 ) / ( 2x - 2 )
(b) Rumus :
y = ( ax + b ) / ( cx + d ) ---> y⁻¹ = ( -dx + b ) / ( cx - a )
( g o f )(x) = ( 2x + 5 ) / ( 2x - 2 )
( g o f )⁻¹ (x) = ( 2x + 5 ) / ( 2x - 2 ) ---> invers ( g o f )(x) tidak berubah
No. [2] :
f(x) = ( 8x + 2 ) / ( 3 - 5x )
g(x) = 11x + 20
(a) ( g o f )(x) = g [ f(x) ]
= g [ ( 8x + 2 ) / ( 3 - 5x ) ]
= 11 [ ( 8x + 2 ) / ( 3 - 5x ) ] + 20
= [ ( 88x + 22 ) / ( 3 - 5x ) ] + 20 ---> samakan penyebut
= [ ( 88x + 22 ) / ( 3 - 5x ) ] + [ 20 ( 3 - 5x ) / ( 3 - 5x ) ]
= [ ( 88x + 22 ) / ( 3 - 5x ) ] + [ ( 60 - 100x ) / ( 3 - 5x ) ]
= [ ( 88x + 22 ) + ( 60 - 100x ) ] / ( 3 - 5x )
= ( -12x + 82 ) / ( -5x + 3 )
(b) Rumus :
y = ( ax + b ) / ( cx + d ) ---> y⁻¹ = ( -dx + b ) / ( cx - a )
( g o f )(x) = ( -12x + 82 ) / ( -5x + 3 )
( g o f )⁻¹ (x) = ( -3x + 5 ) / ( -5x + 12 )