Pilne dam naj!!:)
Oblicz sumy:
a) 1+½+¼+⅛+...+¹/₁₀₂₄
b) 16+8+4+2+...+¹/₃₂
Muszę to mieć rozwiązane tak jak ponizej na przykładzie.
np. 1+3+9+27+...729
n=?
a₁=1
q=³/₁=3
an=729 wzór: an=a₁·g( n -¹ )
729=1·(3)n-1 < to jest u góry
729=3 n-1
729=3 n ·3 -¹
729=3 n ·⅓ /·3
3·729= 3 n<n jest u góry>
3·3⁶=3 n
3⁷=3 n
n=7
1-g n
Sn=a₁ -------------
1-g
1-3⁷
S₇=1· ---------
1-3
1-2·187
S₇=--------------------
-2
-2186
s₇=----------------------=1093
-2
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
a)
1 + 1/2 + 1/4 + 1/8 + ... + 1/1024 =
Mamy sumę ciągu geometrycznego:
a1 = 1
q = 1/2
an = 1/1024
-------------------
an = a1* q^(n-1) = 1* (1/2)^(n-1) = 1/1024 = 1 / 2^10
n-1 = 10 => n = 11
==================
zatem a11 = 1/1024
S11 = a1*[ 1 - q^11]/[ 1 - q]
S11 = 1*[ 1 - (1/2)^11] / [ 1 - 1/2 ] = [ 1 - 1/2048 ]/(1/2) = 2*[ 2047/2048 ] =
= 2047/1024
================
b)
16 + 8 + 4 + 2 + ... + 1/32
Mamy sumę ciągu geometrycznego
a1 = 16
q = 1/2
an = 1/32
-----------------
an = a1*q^(n -1)
16*(1/2)^(n - 1) = 1/32 / : 16
(1/2)^( n - 1) = 1/( 32*16) = 1/512 = (1/2)^9
czyli n - 1 = 9
n = 10
==========
a10 = 1/32
oraz
S10 = a1*[ 1 - q^10]/[1 - q]
S10 = 16*[ 1 - (1/2)^10 ] / [ 1 - 1/2] = 16*[ 1 - 1/1024 ]/(1/2) = 32*[1023/1024] =
= 1023 /32 = 31 31/32
======================