" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
-8x²+64x-128=0
-x²+8x-16=0
Δ=64-4*(-1)*(-16)=64-64=0
W(-b/2a,-Δ/4a)
W(-8/-2,-0/-4)=(4,0)
y=-8(x+4) - kanoniczna
f(x)=-8x²+64x-128
postać ogólna funkcji: f(x)=ax²+bx+c
-8x²+64x-128=0/:(-8)
x²-8x+16=0
f(x)=x²-8x+16
postać kanoniczna: f(x)=a(x-p)²+q
p=-b/2a
q=-Δ/4a
f(x)=-8x²+64x-128
p=-64/2*(-8)
p=-64/(-16)
p=4
Δ=b²-4ac
Δ=64²-4*(-8)*(-128)=4096-496=0
q=0/4*(-8)
q=0
y=-8(x-4)²
a)
x²+4x-5=0
Δ=b²-4ac
Δ=4²-4*1*(-5)=16+20=36
√Δ=6
x₁={-b+√Δ}/2a oraz x₂={-b-√Δ}/4a
x₁={-4+6}/2*1 x₂={-4-6}/2*1
x₁=2/2 x₂=-10/2
x₁=1 x₂= -5
b)
2x²+5x-12=0
Δ=b²-4ac
Δ=5²-4*2*(-12)=25+96=121
√Δ=11
x₁={-b+√Δ}/2a oraz x₂={-b-√Δ}/4a
x₁={-5+11}/2*2 x₂={-5-11}/2*2
x₁=6/4 x₂=-16/4
x₁=3/2 x₂= -4
c)(2x-1)²>16
4x²-4x+1>16
4x²-4x-15>0
Δ=b²-4ac
Δ=(-4)²-4*4*(-15)=16+240=256
√Δ=16
x₁={-b+√Δ}/2a oraz x₂={-b-√Δ}/4a
x₁={4+16}/2*4 x₂={4-16}/2*4
x₁=20/8 x₂=-12/8
x₁=5/2=2½ x₂= -3/2=-1½
rysujemy oś liczbową ,zaznaczamy punkty -1½ i 2½ , ramiona do góry
rozwiązaniem jest przedział: x∈(-∞ ,-1½)u(2½,+∞)
d)
x(x+6)≤ 9(4x-9)
x²+6x≤ 36x-81
x² -30x+81≤0
Δ=b²-4ac
Δ=(-30)²-4*1*81=900- 324=576
√Δ=24
x₁={-b+√Δ}/2a oraz x₂={-b-√Δ}/4a
x₁={30+24}/2*1 x₂={30-24}/2*1
x₁=54/2 x₂=6/2
x₁=27 x₂=3
tak samo jak w podpunkcie d
x∈<3,27>
e)
3x²+5x-12=0
Δ=b²-4ac
Δ=5²-4*3*(-12)=25+144=169
√Δ=13
x₁={-b+√Δ}/2a oraz x₂={-b-√Δ}/4a
x₁={-5+13}/2*3 x₂={-5-13}/2*3
x₁=8/6 x₂=-18/6
x₁=4/3 x₂= -3
f)
2x²-1⅔x-1⅓ =0
Δ=b²-4ac
Δ=(1⅔)²-4*2*(-1⅓)=25/9+96/9=121/9
√Δ=11/3=3⅔
x₁={-b+√Δ}/2a oraz x₂={-b-√Δ}/4a
x₁={1⅔+3⅔}/2*2 x₂={1⅔-3⅔}/2*2
x₁=5⅓/4 x₂=-2/4
x₁=4/3 x₂= -½